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Distributing simulations among multiple processors is one approach to reducing

VHDL simulation time for large VLSI circuit designs. However, parallel simulation

inuoduces the problem of how to partition the logic gates and system behaviors among

the available processors in order to obtain maximum speedup. This research investigates

deliberate partitioning algorithms that account for the complex inter-dependency structure

of the circuit behaviors. Once an initial partition has been obtained, a border anealitng

algorithm is used to iteratively improve the partition. In addition, methods of measuring

the cost of a partition and relating it to the resulting simulation performance are

investigated. Structural circuits ranging from one thousand to over four thousand

behaviors are simulated. The deliberate partitions consistently provided superior speedup

to a random distribution of the circuit behaviors.
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PARTITIONING STRUCTURAL VHDL CIRCUITS

FOR PARALLEL EXECUTION

ON HYPERCUBES

L. Introduction

1.) Background

Modern integrated circuit designs are rapidly growing larger and more complex, with

chip transistor counts increasing by approximately 25% per year, doubling every three

years (13:17). In order to reduce chip costs and turnaround times, designers use

sophisticated simulation tools to validate their designs prior to chip fabrication (4:1). The

Department of Defense (DOD) established the Very High Speed Integrated Circuit

(VHSIC) program in 1979 with the primary objective of advancing the state of the art in

the areas of large scale circuit design and manufacturing technology (15:1). As part of

this program, the VHSIC Hardware Description Language (VHDL) program began in

1981 with the goal of developing a standard simulation language for the support of

hardware design (15, 4).

As the size and complexity of circuit designs continue their upward trend, there is a

growing need to increase the speed of the VHDL simulations. Slow sequential

simulations rev.'. an a longer iterativ ! design process and increase the cost of the final

producL In an effort to achieve the desired performance improvement, the Advanced

Research Projects Agency (ARPA) has sponsored the QUEST project with the objective

of obtaining a thousand-fold speedup in large VHDL simulations using the commercial

Intermetrics VHDL simulator running on a VAX 8650 as the baseline (6:2, 19:1-1).



Previous ART research has investigated the possibility of achieving speedup by

distributing the VHDL simulations over multiple processors for parallel execution. By

effectively sharing the simulation workload among multiple processors, simulations of

complex chip designs can be run faster, resulting in a more efficient and cost-effective

design cycle.

ART research in 1991-92 focused on the internal data structures used in the

Intermetrics commercial VHDL simulator which runs in a sequential mode. A method of

intercepting the intermediate C source code from the Intermetrics compiler, transforming

it into parallel models, and executing the transformed code in parallel with correct results

on Intel iPSC/2 and iPSC/860 hypercubes has been demonstrated (8, 4). The result of this

research is a parallel VHDL simulator, referred to as VSIM, that implements a selected

subset of the standard VHDL language (4).

Breeden's results demonstrated that speedup on multiple processors can be achieved

under limited circumstances using a random partitioning of the VHDL behaviors1 among

the processors of the hypercube (4). In his random partitioning approach, the objective

was to randomly assign an equal number of behaviors to each processor without

considering their complex inter-dependency relationships. As a result, the speedup results

were significantly less than optimal, and fell off rapidly as the number of processors was

increased due to increases in communications overhead. This thesis research effort

focuses on the development of efficient and effective partitioning strategies to map the

logical VHDL behaviors to the physical processors of a hypercube in order to take

maximum advantage of the parallelism available in the simulation application.

1 A behavior is an executable VHDL process representing a logic gaze, source signal, or other simple
VHDL process.

2



Walace Tree Speedup with Rmdom Pardtha

3.50-

3.00-

2.50-

1.50t-
1.ooU

1 2 3 4 5 6 7 8

Number of LPs

Figure 1. Speedup Curve for Wallace Tree with Random Partitioning

12 Problem Stawement

AFIT's parallel VHDL simulator, VSIM, has been validated on circuits as large as an

8 x 8 Wallace Tree Multiplier, containing over 1000 VHDL behavior on both an 8-node

iPSC/2 and an 8-node iPSC/860 hypercube (4). However, in order to maximize the

benefits of parallelization, a deliberate partitioning strategy is required that takes into

account the complex inter-dependency relationships of the VHDL behaviors when

mapping them onto the physical processors of the parallel system. Otherwise, the

communications overhead required to maintain synchronization among the processors

will negate the potential speedup benefits. For example, Figure 1 shows how the speedup

curve for the Wallace Tree Multiplier on the iPSC12 with a random partitioning of the

behaviors takes a downward turn as the number of processors is increased past four.

13 Research Objectves

The primary objective of this thesis is to demonstrate improved speedup over random

partitioning in the simulation of medium to large sized VHDL circuits using the VSIM

3



parallel simulator. This will be accomplished through the use of a deliberate partitioning

strategy. Specific research goals include:

"• Developing an efficient and effective partitioning strategy that accounts for the

complex inter-dependency saucture of the VHDL circuit being simulated.

"* Investigating methods of computing the cost of a partition.

"* Quantifying the relationship between the cost of a partition and the resulting

performance of the simulation.

"* Demonstrating improved speedup over a random partitioning using a variety of

VHDL circuits.

1.4 Assumptions

The research by Comeau provided the foundation for the transformation of

Intermetrics VHDL models into models that can be executed in a parallel environment

(8). Breeden built upon this work, automating the transformation process, and validating

the results of the parallel simulator VSIM (4). Building upon their research, the following

assumptions are made in this thesis:

I The subset of the standard VHDL implemented by VSIM, as described in (4), is

adequate to demonstrate the feasibility and effectiveness of various partitioning

strategies.

• The commercial Intermetrics VHDL compiler, version 2.1, September 1990, will

be used to provide the sequential VHDL models (4).

* The conservative Chandy-Misra algorithm for parallel discrete event simulation

(PDES) is used to maintain synchronization between the processors of the parallel

system. Using the SPECTRUM 2 testbed, the null-message protocol is used to

provide deadlock avoidance (4). To maintain consistency with the AFIT

2 Simulation Protocol Evaluation on a Concurrent Testbed using ReUsable Modules (20).

4



simulation environment, this synchronization protocol will not be significantly

alterd for this thesis.

" Secondary storage input/output (1/O) during parallel simulations on the Intel

hypercubes has been shown to overwhelm the benefits of parallelizazion (4:80).

This thesis will focus on achieving computational speedup only. It is assumed that

other research will effectively address the architectural issues associated with the

large 1/0 requirements of PDES applications.

"* Under the SPECTRUM simulation environment, individual VHDL behaviors are

grouped into logical processes (LPs) to increase the granularity of the application

tasks. The research in this thesis makes the assumption of one LP per physical

processor. This assumption eliminates the context switching and message passing

overhead encountered when multiplexing several LPs on a single processor.

"• A graph-based behavior dependency representation will provide the information

necessary to make sound partitioning decisions in an efficient manner.

1.5 Scope

The following list outlines the limits on the scope of this research effort:

"* Finding an optimal solution to the problem of mapping N inter-dependent tasks

onto P processors is known to be NP-Complete (22:142). This research will seek

an efficient and effective heuristic approach that results in consistently good

solutions, though they may be sub-optimal.

"* The subset of the standard VHDL supported by VSIM will not be extended as part

of this research effort.

"* Circuit descriptions used to validate various partitioning strategies will be limited

to less than 5000 behaviors. To implement circuits much larger than this limit in a

realistic manner will require extensions to the VHDL subset supported by VSIM.

5



This research will not alter the conservative null-message parallel discrete event

simulation (PDES) protocol currently implemented by VSIM except when such

alterations directly support the validation of a partitioning strategy.

1.6 Limitations

The limitations of the VSIM parallel VHDL simulator are described in (4:4-6). No

new limitations on VSIM are imposed as a result of this thesis effort. However, the

partitioning tool implemented as part of this thesis has been limited to a maximum of 128

LPs due to the memory required for the data structures used.

1.7 Thesis Overview

Chapter 2 reviews several general approaches to solving the problem of efficiently

mapping N tasks onto P processors as found in the current literature. Chapter 3 gives the

background on the implementation of VSIM and the SPECTRUM simulation

environment. This information leads into a discussion of the specific requirements for a

parallel VHDL partitioning strategy. Implementation of this strategy is discussed in

Chapter 4. Chapter 5 discusses the research methodology and results. Finally, Chapter 6

presents the conclusions formulated during this research and gives recommendations for

future research.

1.8 Summary

The need for this research stems from the rapid increase in the size and complexity of

modern large-scale integrated circuit designs. Current commercial VHDL simulators

execute in a sequential manner, leading to long design cycles for extremely large circuits.

One approach to achieving the desired speedup is through distribution of the simulation

load among multiple processors in a parallel system. Previous AFIT research has

6



validated the concept of parallel VHDL simulation through the development of VSIM.

This research investigates methods of partitioning the VHDL circuits among the parallel

processors in order the maximize the speedup obtained through parallelization.
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1. Background

2.1 Overview

This chapter presents a discussion of previous research relating to the parallel

program Mapping Problem and how those results might be applied to the specific

problem of partitioning structural VHDL circuit descriptions for parallel simulation. To

facilitate this discussion, several characteristics of an ideal partitioning strategy are first

presented.

2.2 The VHDL Mapping Problem

2.2.1 The Parallel Programming Mapping Problem. In the context of parallel

programming applications, the mapping problem is defined as the binding of the logical

components of the parallel application program to the physical resources of the target

parallel system such that some desired performance criterion is optimized (22:141). For

example, it is usually desired to map the application in such a way that the total execution

time is minimized. Optimal solutions to the general mapping problem have been shown to

be NP-complete and no polynomial time algorithm for their solution is known to exist

(17:63, 22:142). As a result, sub-optimal solutions are often pursued using various

heuristic methods (22, 17). The logical-to-physical binding of a parallel application

controls the utilization of the parallel system and directly affects the amount of time and

memory required to complete program execution.

The mapping problem arises when the number of processes (i.e. tasks) required by the

parallel application is greater than the number of available processors (cardinality

variation ), or when the task-dependency structure of the parallel application differs from

the physical interconnection structure of the parallel system (topological variation ) (2).
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2.22 Partitioning VSIM. To date, no effort has been made at developing an

optimal (or near-optimal) partitioning strategy for mapping VHDL behaviors to fully

exploit the parallelism available in large VHDL simulations using the VSIM simulator

(4). In the parallel VHDL simulation environment created by VSIM, cardinality variation

can be dealt with by grouping VHDL behaviors into logical processes (LPs) which

comprise the concurrent tasks managed by the SPECTRUM testbed. A large VHDL

circuit may contain hundreds of thousands of behaviors with a complex interdependency

structure. Assuming the assignment of 1 LP per physical processor, there is likely to be

hundreds, or even thousands, of behaviors per LP. As a result, the behavior grouping, or

partitioning, is likely to be a critical factor in the relative performance of the parallel

simulation.

The two key objectives of most strategies that have been proposed for the general

parallel program mapping problem are achieving a balanced computation load among all

of the processors, and minimizing the inter-processor communication. The former deals

with making efficient use of all of the processor resources, while the latter deals with

reducing non-productive overheads such as message setup and transfer times.

The general mapping problem can be divided into two sub-problems: job scheduling

and task allocation (21:1408). The goal of job scheduling is to obtain maximum system

utilization by scheduling independent jobs among the processors in a distributed system.

This involves a dynamic schedt ling ability as old jobs are completed and new ones are

submitted. In contrast, the task allocation problem involves the allocation of several inter-

dependent tasks of a single program among the processors in a distributed or parallel

system. The goal of task allocation is to minimize the completion time of the single

application program. The task allocation problem has been approached separately as both

a dynamic and static allocation problem, with the latter being desirable if the

interdependencies of the task structure can be statically defined a priori (21:1409). In the
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VSIM environment, each individual VHDL behavior is equivalent to a task.3 In addition,

the inter-dependency structure of the behaviors is known prior to simulation and is static.

Therefore, throughout this thesis, discussion of the mapping problem implies the static

task allocation problem.

2.3 Characteristics of an Ideal Partitioning Strategy

Before evaluating various heuristic solutions to the general parallel program mapping

problem, it is useful to discuss some characteristics of an ideal partitioning strategy that

can be used for comparison purposes. In the context of this thesis, the phrase ideal

partitioning strategy is used as it applies to the specific problem of parallel discrete event

simulation (PDES) for large VHDL circuits using VSIM. It is reasonable to expect that

such a partitioning strategy will be equally applicable to other parallel problems that have

similar static task dependency characteristics. The desirable properties of an ideal parallel

VHDL partitioning strategy include the following:

Computational Efficiency - The partitioning algorithm should be

computationally efficient, requiring only polynomial time to converge to a good

solution. Finding the optimal solution4 to the general mapping problem has been

shown to be NP-complete, thus rendering it computationally infeasible to seek

such a solution for large and complex problems (17:63, 22:142). Parallel

algorithms are one potential means of achieving the necessary computational

efficiency, although numerous sequential algorithms have been proposed as well.

3 Throughout this thesis, the terms behavior, process, and task are used interchangeably to represent the
vertices of the problem-graph.
4 In the context of this thesis, the optimal solution is defined as the mapping that results in the fastest
simulation for a given number of processors. A good solution is defined as any solution that results in
"near-optimal" simulation run times.

10



"* Balanced Workload - The partitioning algorithm should result in a balanced

computation load among all available processors (5:294). This requires that the

percentage of time spent performing useful computations be approximately equal

for each processor.

"* Exploitation of Inherent Parallelism - The partitioning algorithm should

produce solutions which take advantage of the parallelism inherent in the

simulation application.

"* Minimized Inter-Processor Communications - The partitioning algorithm

should produce solutions with minimal communications between processors

(5:294). The two primary factors to consider here are the number of

communication links between tasks on different processors, and the relative

frequency with which messages are sent over those links.

"* Scalability - The partitioning algorithm should be easily scalable, both in

terms of the number of tasks in the problem graph, and the number of processors

(5).

"* Deterministic Solutions - The partitioning algorithm should produce

deterministic solutions which are based upon the known static inter-dependency

structure of the problem graph.

"• Input Problem Variations - The partitioning algorithm should be applicable to

a wide variety of VHDL circuits, including those with feedback loops.

"* Accounts for PDES Synchronization Protocol - Ideally, the partitioning

algorithm should be equally applicable regardless of the particular parallel

discrete event simulation protocol used. However, this is not feasible since the

simulation protocols play a major role in defining the amount of inter-processor

communications. Instead, given a specific simulation synchronization protocol,
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the partitioning algorithm should account for its overhead requiremnts when

making decisions regarding task partitioning.

2.4 General Approaches to the Mapping Problem

Numerous approaches to the static task mapping problem have been pursued

including algorithms based on graph theory, mathematical programming, queueing

theory, and various heuristic approaches such as simulated annealing (21:1409). Two

specific graph-based models which have been proposed for modeling the static task

allocation problem involve the use of a task precedence graph (TPG) and a task

interaction graph (TIG). The task precedence graph model consists of a directed graph in

which the vertices represent tasks and the edges represent inter-task execution

dependencies. Computational and communication costs are represented by adding

weights to the vertices and edges of the graph. A task interaction graph has the same basic

structure. However, a task precedence graph models execution precedence dependencies

whereas a task interaction graph models the need for inter-task communication without

explicitly representing such temporal depc'ndencies. All tasks are considered

independently and concurrently executable. In both models, the goal is to map the tasks to

processors so as to minimize the total program execution time (21:1409).

The class of parallel problems that can be modeled by a task interaction graph (THG)

consists primarily of iterative algorithms in which all tasks can execute independently

during each iteration, and exchange data values only in between iterations (21:1409).

Many algorithms for matrix manipulations fit into this category.

On the other hand, problems which exhibit temporal dependencies (e.g., task B cannot

execute until task A has executed) between tasks can be modeled with the task

precedence graph (TPG). The temporal dependencies modeled by the directed arcs of the
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Task A 1 2 3 4

Task B 1 2 3 4 5
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Figure 2. Iterative PDES Algorithm

TPG define a series of tasks that must be executed sequentially, making these problems

inherently difficult to parallelize.

The set of iterative problems encompassing parallel discrete event simulation (PDES)

can be represented by the TPG model by considering the temporal dependencies in terms

of a single iteration, and overlapping the iterations in a pipeline fashion. Figure 2 shows

an example for three simple tasks over five iterations, with the assumption that each task

is on a separate processor. Task A produces a series of five data values, each of which is

acted on separately by task B. In turn, task B produces a series of five data values, each of

which is acted on separately by task C. Because task A has no dependencies, it can run

independently to completion. However, task B cannot begin its operation on the first

iteration until the first input has been received from task A. A similar relationship holds

between tasks B and C. For illustrative purposes, each task requires a different anount of

time to perform its computation on the data values flowing through the system as

indicated in the figure. The numbers in the rectangles represent the iteration that each task

is on at a given point in time, with time not covered by a rectangle representing idle time

for that task. Note that because this is an event-driven simulation, the three tasks are not
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necessarily executing in lockstep. For example, task A begins its third iteration before

task B completes its first iteration.

The TPG model is used throughout this thesis to model the VHDL mapping problem5

by modeling the individual VHDL behaviors as graph vertices and the inter-behavior

dependencies as directed edges. Further discussion of this model can be found in the

requirements section of chapter 3. The remainder of this chapter examines numerous

aspects of various partitioning schemes using graph-theoretic techniques that have been

proposed for a variety of parallel problems.

2.4.1 Random Partitioning. Random Partitioning involves the random

distribution of the tasks into the desired number of LPs, and was the partitioning scheme

used for prior AFT research on circuits with more than 100 behaviors (4). It is one of the

simplest partitioning algorithms, but potentially the most ineffective. Under this

approach, only the load balancing among the LPs is considered. The behavior

dependencies, and associated communications costs, are ignored. Breeden shows that in

some limited circumstances, speedup can be obtained with this partitioning scheme

(4:70). However, because the behavior dependencies are not considered, the resulting

partition has a large number of inter-behavior dependencies that cross the partition

boundaries, and often has artificial feedback imposed upon it. The situation worsens as

the number of LPs grows. As a result, this partitioning strategy is not likely to scale very

well or provide very good performance. This conclusion is supported by the limited data

available from previous research (4:70).

2.4.2 Sirqle Data Partitioning. A slightly better algorithm, but just as simple as

the random partitioning, is referred to as Simple Data Partitioning (SDP) (9:78). Under

5 The VHDL mapping problem in this thesis is considered relative to the VSIM/SPECTRUM simulation
environment.
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the SDP approach, each vertex in the graph has a weight associated with it, with the

weight calculated as the degree of the vertex (number of arcs to and/or from the vertex).

Each partition is filled one at a time, with vertices selected for inclusion by decreasing

order of their weight until the combined weight of the current partition is approximately

equal to the calculated average weight (9:78). The result is that vertices with a high in/out

degree will tend to be grouped together in partitions with fewer vertices. The method of

selecting which of several vertices with the same weight is not specified, and is assumed

to be arbitrary. As a result, it is reasonable to expect that for graphs in which a large

portion of the vertices have equal weights, results similar to those for random partitioning

would be achieved.

Since each arc in the graph represents a potential for inter-task communications, a

vertex with a high in/out degree is likely to have more inter-task communications than a

vertex with a small in/out degree. Thus, on the surface it seems as though grouping

vertices with a potential for large amounts of communications in the same partition would

tend to minimize inter-partition communications. The fallacy of this approach is that a

group of vertices with high in/out degree may in fact result in a large amount of

communications, but not necessarily with other vertices in the same partition.

2.4.3 General Graph Contraction & Layout Algorithm. An alternative approach to

the mapping problem attempts to address both cardinality variation and topological

variation at the same time by modeling a given parallel algorithm with afamily of graphs

(GO}. Each graph Gn represents the static dependency graph of a parallel algorithm for a

problem of size n. A similar graph Gp models the physical processors and interconnection

structure of the target architecture for P processors (2:307, 3:441). Given a problem of

size n represented by graph Gn, the proposed approach involves contracting the graph Gn

into a smaller graph Gk of size k from the same graph family. The contraction process is
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Figure 3. Contraction within a graph family. Vertices incident to dashed edges are
grouped into a sngle vertex (3:449)

continued until k = P, thereby eliminating the cardinality variation. The next step is to lay

out the contracted graph Gk onto the physical interconnection graph Gp, thereby

eliminating the topological variation. The final step in the algorithm uses multiplexing to

implement the problem-graph Gn on the image of Gk (2:307, 3:441). Three examples of

contracting an algorithm represented by Gn into a graph from the same family Gk are

shown in Figure 3.

In the specific case of the VSIM/SPECTRUM simulation environment, this approach

could be improved by encapsulating each vertex on the contracted graph Gk inside of a

single logical process (LP), thereby avoiding the communications and context switching

overheads associated with multiplexing multiple tasks on a single processor. Even then,

this approach makes two implicit assumptions about the problem domain that severely

limits its feasibility as a solution to the mapping problem for parallel VHDL simulation.
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Figure 4. Alternative Contraction for Graph of Figure 3.a

First, it assumes that the dependency graph of the parallel algorithm (in this case the

simulation of a structural VHDL circuit), will exhibit a pattern that remains consistent as

the problem size grows larger. Second, it assumes that there exists a graph Gk e (G{n

whose cardinality and topological layout are the same as that of the physical

interconnection graph Gp.

As a final observation concerning this approach, it should be noted that even if both

of these assumptions hold and this methodology can be used to map the problem-graph

onto the processor-graph, it may or may not result in the most efficient inter-processor

communications structure. If tasks on the same processor are encapsulated within a single

LP, external messages will not be required for two such tasks to communicate.

Therefore, each dashed edge in Figure 3 represents a potential inter-processor

communications link that has been eliminated in the contracted graph. Considering dhe 8-

node graph of Figure 3.c which is contracted into 4 LPs, there is clearly no possible way

that this contraction could be done such that more than four edges are eliminated without

sacrificing load balancing. However, consider the 11-node graph of Figure 3.a which is

contracted into 5 LPs with the elimination of only two edges. Figure 4 shows an

alternative contraction that would eliminate six edges, thus reducing the potential inter-

processor communications.

2.4.4 Strip Assignment Algorithm. Two other approaches, Strip Assignment and

Two-Dimensional Mapping, have been proposed for the specific problem of mapping

metalforming applications using finite element methods onto a hypercube architecture
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(22, 21). Both of these heuristic approaches attempt to address the load-balancing and

inter-processor communications aspects of the mapping problem separately. Load-

balancing is addressed by attempting to allocate an equal number of tasks to each

processor. This is analogous to allocating an equal number of VHDL behaviors to each

Logical Process (LP), with one LP per processor. The inter-processor communications

overhead is addressed in two ways. First, the algorithms attempt to group tasks together

on the same processor such that the amount of inter-processor communications requirrd

is minimal. Second, each algorithm attempts to allocate the task groups among the

processors such that only nearest-neighbor communications are ever required (22, 21).

The strip assignment method evenly distributes the tasks among the available

processors in such a way that each processor will only need to communicate with no more

than two immediately adjacent neighbor processors. Letting N be the total number of

tasks in the problem-graph and P be the total number of processors, the number of tasks

per processor to achieve a balanced load is FN/P1 for some processors, and LN/PJ for the

remainder (22:144, 21:1414). An example for N = 48, P = 6 is shown in Figure 5. Letting

NC be the maximum number of tasks in any column of the problem-mesh, and NR be the

maximum number of tasks in any row, the order in which tasks are added to a partition

depends on the relative magnitudes of NC and NR. Beginning at any corner of the

problem mesh, tasks are added to the current partition along the columns if NC ! NR, or

along the rows if NR 5 NC. Subsequent partitions begin where the previous one left off

(22:145).

The strip assignment method assumes that the graphical representation of the problem

can be represented by a two-dimensional mesh layout in which each task has at most four

communication paths to its nearest neighbor tasks. In addition, in order for the strip

method to guarantee that nearest-neighbor communications are maintained among the

18



PS i P3

S, ,

48 nodes /6 PEs -8 iwdeu/PE

Figure 5. Example of the Strip Assignment Method for a Problem-Mesh (22:143)

physical processors, a certain constraint on the problem-mesh must be met (22:144,

21:1414). Specifically, the strip method requires that:

IN/PJ >min (Nc, NO

It is reasonable to expect that very few, if any, VHDL circuit dependency graphs will

ever meet the two-dimensional mesh layout requirement Thus, this algorithm does not

seem suitable for the partitioning of structural VHDL circuit simulations.

2.4.5 Two-Dimensional Mapping Algorithmn. The other method that has been

applied to metalforniing applications using finite element methods is Two-Dimensional

Mapping (22:145). This approach differs from the Strip-Assignment method in that an

attempt is made to reduce the number of nearest-neighbor communication links between

processors. As can be seen from Figure 5, the Strip-Assignment method results in

partitions that span the entire problem-mesh (either column-wise or row-wise). As a

result, a large number of communications links in the problem-mesh cross the partition

boundaries. The Two-Dimensional Mapping approach capitalizes on the fact that square

partitions will have a smaller perimeter-to-area ratio than the "rectangular" partitions of
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Figure 6. Initial Partition of a Two-Dimensional Mapping for a Problem-Mesh

the Strip-Assignment method, and thus, should result in fewer communications links

crossing the partition boundaries. Schwan et al. suggest a three-step approach (22:145):

" Divide the problem-mesh into square partitions as if the problem-mesh were

perfectly regular. Depending on the dimensions of the problem mesh, some

partitions may only approximate squares.

"* Use a border-refinement algorithm to account for an irregular problem-mesh and

achieve load-balancing.

"* Use a secondary refinement algorithm to attempt further minimization of inter-

processor communications while maintaining a balanced load. This step is

optional.

Figures 6 and 7 demonstrate a two-dimensional mapping for the same problem-mesh

as in Figure 5. First, Figure 6 shows the initial two-dimensional partition consisting of

simple horizontal and vertical lines through the problem-mesh. Visualizing the problem-

mesh as being perfectly regular (all columns have NC processes and all rows have NR

processes), the lines are placed so that the resulting partitions are as close to being

identically sized squares as possible. However, because the problem-mesh is not perfectly

regular, the resulting partitions are not evenly balanced. The second step in the algorithm

requires moving processes from one partition to a neighboring partition until all partitions
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Figure 7. Two-Dimensional Mapping Partitions after Border-Refinement

are balanced. The resulting partitions ame shown in Figure 7. Note that in the strip-

assignment partitions of Figure 5, there were 32 inter-partition communication links. In

the two-dimensional partition, the number of inter-partition communication links has

been reduced to 21 while maintaining a balanced load.

An additional benefit of two-dimensional mapping over strip-assignment is that the

former does not impose any constraints on the number of processors P as it relates to the

dimensions of the problem-mesh NR and NC .Thus, it can be applied to problem-meshes

where strip-assignment is not applicable. Like strip-assignment, however, this approach is

only applicable to problems that can be represented as a two-dimensional mesh. Thus, as

it is presented here, two-dimensional mapping does not seem suitable for the partitioning

of structural VHDL circuit simulations. However, the idea of performing load balancing

and reducing the inter-partition communication costs by refining the partition boundaries

can be extended to algorithms that can be applied to other forms of problem graphs.
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2.4.6 Algorithm M, An Optimal Approach. Another approach to the mapping

problem, Algorithm M, has been proposed for static assignment of tasks in a distributed

system in which the processors communicate over an ethernet-based medium (16). In

such a system, all processors communicate over a shared pathway for which all

processors must compete. As a result, the processor interconnection graph Gp is fully

connected, and no special steps are required to layout the partitioned problem-graph Gk

onto the processor graph Gp (16:240).

Lo argues that the goals of a static partitioning algorithm for a distributed system are

different from those of a static partitioning algorithm for a parallel system given an

identical problem domain (16:240). However, in both systems, the inter-processor

communications (IPC) should be minimizea while meeting some load balancing

constraint (e.g. equal number of processes per processor). The two systems differ

primarily in the relative cost of inter-processor communications in relationship to the cost

of some load imbalance. However, these relative cost differences also exist between

different classes of parallel systems, and even between different applications on the same

parallel system. Thus, the goals of partitioning problem-graphs for distributed systems

and partitioning them for parallel systems are actually the same. It is only the mapping of

the partitions onto the physical processors that differs, and then only if one is concerned

about maintaining nearest-neighbor communications in parallel systems. As a result, an

effective partition for one type of system is likely to be just as effective on the other type

of system. Given this fact, Algorithm M can be studied as it might apply to partitioning

problem-graphs for parallel systems.

Algorithm M has been shown to provide an optimal partitioning of a problem-graph

Gn onto P identical processors in polynomial time providing that the number of tasks n in

Gn is no more than twice the number of processors (n < 2P), and providing that no more

than two tasks can be assigned to any single processor (16:241). Although this restriction
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makes this approach unsuitable for parallel VHDL simulations which may have hundreds

to tens of thousands of tasks per processor, it is discussed here because it leads into the

sub-optimal heuristic approximation discussed in the next section which removes the

restriction on n.

Algorithm M begins by finding a maximum weight matching of the problem graph

Gn. A matching is defined as a set of edges from a graph such that no two edges in the

set share a common vertex. The sum of all the weights of the edges in the matching forms

the weight of the matching. The maximal weight matching is the matching of the graph

with the largest weight. Algorithms exist to find the maximal weight matching of a graph

in polynomial time (16:241).

After the maximal weight matching has been found, the next step is assigning the two

tasks corresponding to each edge in the matching to a processor with no other tasks

assigned to it (16:241). It should be noted that a maximal weight matching may not

necessarily contain all of the tasks in the problem-graph. Tasks that are not connected by

an edge in the matching are arbitrarily paired and assigned to a processor with no other

tasks assigned to it. Finally, if there remains a single unpaired task, it is assigned b: -tself

to any remaining processor that has no other tasks assigned to it. Lo states that this

algorithm will provide an optimal partition for a given input problem-graph that meets the

constraint n • 2P (16:241). If the problem is such that communications costs between

some pairs of tasks will be greater than between other pairs of tasks (due to frequency of

messages, size of messages, etc.), this algorithm has the interesting property that those

pairs of tasks with the highest communications costs will be assigned to the same

processor where communications costs are negligibi,-

As mentioned previously, the restriction n • 2P nmits the class of problem-graphs that

may be partitioned using this algorithm. An additional shortfall of the algorithm is the

implicit assumption that each task will have an equal weight (in terms of computational
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cost). Depending on the extent to which this may not be true, this further limits the class

of problems for which this algorithm will result in a partition that is truly optimal in terms

of both inter-processor communications and load balancing.

2.4.7 Algorithm H, A Heuristic Approximation of Algorithm M. Algorithm H

represents a sub-optimal approximation of Algorithm M for the polynomial-time

partitioning of an arbitrary number of tasks n among P processors with a bound B on the

maximum number of tasks per processor where Fn/P1 • B • n (16:242). This is

accomplished by first reducing the original problem graph Gn with n tasks to a smaller

graph Gk with k nodes using a "Sort Greedy Algorithm" so that k ! 2P and with Gk

having no more than rB/21 tasks per node (16:243). An optimal partitioning for the

reduced graph Gk can then be obtained umg Algorithm M. However, this partition may

not necessarily be optimal for the original problem-graph Gn (16:242).

Lo's simulation results have shown that Algorithm H performs relatively well, find'ng

an optimal partition in over 80% of the test cases run (16:243). However, this data was

collected on only a small set of problem-graphs with no more than 35 tasks and 5

processors. In addition, because a greedy-type algorithm is used for the initial graph

reduction from Gk to Gn, poor assignments may result when the problem-graph contains

relatively uniform communication costs (16:243). This is likely to be the case in large

structural VHDL circuit simulations. Nevertheless, the concept of a phased approach to

partitioning a problem-graph presented by this algorithm holds potential for a polynomial

time general-purpose partitioning algorithm that will provide near-optimal solutions.

2.4.8 Depth-First Breadth-Next Algorithm. An algorithm called Depth-First

Breadth-Next (DFBN) has been proposed to partition problem dependency graphs (17).

The goals of this algorithm are to assign dependent tasks to the same processor, and
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Figure 8. Example Problem Graph for DFBN Partitioning (17:64)

independent tasks to different processors (17:63). The name is derived from the manner

in which the problem graph is traversed when partitioning dependent tasks.

Two assumptions concerning the set of applicable problem-graphs are made for the

DFBN algorithm. First, it is assumed that the graphs are acyclic. Second, it is assumed

that the tasks execute non-preemptively, and must run to completion once they begin

execution (17:65). In the example problem graph of Figure 8, each edge is labeled with a

total communications time, and each task is labeled with a total execution time. These

values correspond the weights of the edges and tasks respectively, and are used in

prioritizing non-critical tasks on the same processor for scheduling purposes (17:69). A

critical task is one that must be executed before any others in order for any progress to be

made (e.g., task 0 is critical).

The actual DFBN partition ignores the task and edge weights, and considers only the

interdependency relationships between the tasks. Since the edges in the graph represent

temporal dependencies and the assumption has been made that the tasks run non-

preemptively to completion, simultaneous execution of tasks located on the same path is

not allowed. Thus, each path in the graph represents a set of dependent tasks, and tasks

that are not on the same path are independent (17:68). The goal of assigning dependent

tasks to the same processor may not be completely achievable since two independent
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tasks may have common dependencies (17:67). For example, in the graph of Figure 8,

tasks 1, 2, and 3 are all independent, but all share the common dependency on task 0.

Nevertheless, it may be possible to achieve a good approximation of the stated goal.

The partitioning algorithm simply performs a depth-first search of the problem-graph,

beginning at the source nodes. When a task has been discovered by the search, it is

marked so that it will not be included as part of more than one path. According to the

DFBN algorithm, each distinct path in the problem-graph resulting from the DFBN

search is assigned to a different processor (17:68). However, this assumes that the number

of distinct paths will be less than or equal to the number of available processors, which

may not be true. Furthermore, the DFBN algorithm makes no effort to balance the

computation load among the processors. Some progress is made towards limiting inter-

processor communications since communications between dependent tasks of the same

path are on the same processor. However, this minimization is likely to be unevenly

applied and far from optimal.

2.4.9 Kernighan-Lin Algorithm. A graph-partitioning procedure proposed in

1970, known as the Kernighan-Lin algorithm after its authors (14), is often a standard

used by others for comparison with their own partitioning algorithms (9:78). The

Kernighan-Lin algorithm divides a weighted problem-graph into partitions of equal cost

and with a minimum cutset. This is accomplished by first making an arbitrary, but even,

partition of the problem-graph. Tasks are then swapped between partitions until a

minimum cutset is found, when the partition is locally minimum (14:295). Depending on

the nature and size of the problem-graph and the initial partition, the resulting cutset may

also be globally minimum, resulting in an "optimal" partition (14:295, 9:78).
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2.4.10 Siulated Annealing. Sinulated Annealing (SA) refers to an algorithm that

is used to model groups of atoms being cooled to a ground state, using the concept of a

decreasing temperature to aid in the convergence of a solution (9:79). When applied to

the mapping problem, Simulated Annealing begins with a random initial partition of the

problem-graph, and involves moving tasks to other partitions if the total cost of the

partition is lowered. The partition cost equation has factors for the inter-partition

communication costs and the relative cost of the resulting load-imbalance among the

partitions. A random number generator is used to select both the process to move and the

desti: -tion partition. If the move does not result in a lower total cost for the partition, the

move may still be made based on a decreasing random probability function (9:78).

The results of Conrad and Agrawal have shown that Simulated Annealing solutions to

the mapping problem approach optimal solutions more often than the Kernighan-Lin

algorithm, but require approximately two orders-of-magnitude more time to reach a

solution (9:78). Another shortfall of this approach is its non-determinism which is due to

the use of a random-number generator to select the proposed moves and to control the

probability function, as well as the randomness of the initial partition. Depending on the

initial partition and the sequence of proposed moves selected by the random number

generator, it is possible to get different results for the same input.

2.4.11 Mean Field Annealing. A related algorithm to Simulated Annealing,

called Mean Field Annealing (MFA), also refers to an algorithm that models groups of

atoms being cooled to a ground state (9:79). As in Simulated Annealing, MFA begins

with a random initial partition and uses a random number generator at each iteration of

the algorithm to select a task for consideration. The state of the selected task is updated to

determine the proper partition assignment. To control the moves and force a convergence

to a solution, the algorithm uses a probability function that takes into account the total
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cost of the partition and decreases according to some specified schedule (5). The main

advantage of this algorithm is that it converges to a solution much faster than Simulated

Annealing, requiring an execution time on the same order as the Kernighan-Lin

algorithm (9, 5).

Derivation of the MFA algorithm is accomplished by analogy to the Ising spin model

which estimates the state of a system of particles, or spins, in a state of thermal

equilibrium by computing an energy function (5:295). When applied to the mapping

problem, the energy function is interpreted as the cost of a given partition. This cost

function can be computed by an objective function H containing a factor for the inter-

partition communications Hc, and a factor for the partition load imbalance Hb (9:78):

H = Hc + aHb

where the parameter a is a scaling factor used to maintain a balance between the

objectives of minimizing communication costs and maintaining a balanced computation

load (5:297, 9:78). The factor a can be taken as an input parameter to control the level of

load imbalance that is acceptable in a partition.

A function spin (i, p) is defined, with output sip, which returns the probability of

mapping task i to processor p. By definition, sip is a continuous variable in the range

0 < sip < 1. However, as the algorithm reaches a solution, the spin values sip converge to

either a 0 or a 1, with a I indicating that task i is mapped to processor p (5:296). Thus, the

solution can be represented by an N x P spin matrix with each row containing P-I zero

entries. An example for N = 8 and P = 4 is shown in Figure 9.

The cost function H is defined by (5:296):

H = Hc + aoHb

A I ~OqIpsjqL.d. + ! :i, w
4 =1 jwui p-i qOp 2 = j.u ji p.,

where eij represents the communications cost between tasks i and j, wi represents the

computation cost of task i, and dpq represents the relative communications cost per
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P processors

1 2 3 4
1 0 0 0 1
2 0 0 0 1

N 3 0 1 0 0
processes 4 1 0 0 0

5 0 0 1 0
6 0 1 0 0
7 1 0 0 0
8 0 0 1 0

Figure 9. Example Spin Matrix for N = 8 and P = 4 (5:296)

message between processors p and q. In order to calculate the function spin (i,p), the

mean field function OV is defined as (5:2%):

N P N

0 P 1 19sd.-a 1:s^w,
j0uI qp jl

Each individual spin average sip is proportional to eC4 where T is the temperature of the

system, and sip is normalized as (5:296):

sip =
q,1

This normalization forces each row of the spin matrix to sum to 1, and ensures that each

task i is mapped to only one processor when the system stabilizes for a given temperature

T (5:296). During each iteration of the MFA algorithm, a randomly selected row i in the

spin matrix is recalculated using the equations for Oip and sip. After each iteration, the

cost function H is recalculated in order to detect a convergence to an equilibrium state for

a given temperature T. If the cost function H does not decrease after a specified number

of iterations, the system is said to be stabilized for the current temperature. The

temperature T is then decreased according to a specified schedule (5:297). As T is

decreased further, the probability that the randomly selected task i will be moved from its

currently assigned processor decreases, and a final solution is eventually reached.
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The results of Bultan and Aykanat using the MFA algorithm to solve the mapping

problem have shown that its solutions approach the quality of those from the Simulated

Annealing algorithm in 1(20th the time (5:301). However, like Simulated Annealing, the

MFA algorithm has the undesirable property that it is non-deterministic due to the

random initial partition, and the random selection of processes to update from the spin

matrix. Nevertheless, it appears to be a viable alternative to solving the mapping problem

for general parallel problems.

2.5 Summary

The diversity of methods for solving the general mapping problem outlined in this

chapter represent only a small cross-section of those possible. None of the methods

presented claim to provide an optimal solution for all problems. However, most of the

methods provide good solutions for a specific subset of problems.

The next chapter presents a partitioning algorithm that draws upon properties from

several of the algorithms presented in this chapter in an attempt to find a scheme that

provides consistently good partitions for a wide variety of structural VHDL circuit

simulations.
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NI. Problem Analysis

3.1 Overview

This chapter presents a discussion of the graph-partitioning algorithm propobed in this

thesis for mapping VHDL chcuit simulations to multiple logical rresses for execution

in parallel. In order to understand many of the decisions made in formulating the

partitioning algorithm, it is necessary to first understand the target applcation. Thefore,

the chapter begins with a review of the implementation of AFIT's parallel VHDL

simulator, VSIM, as implemented by Comeau and Breeden.

3.2 Implemenwdon of VSIM

Previous AFIT research has resulted in the successful implementation of a parallel

simulator for simulating structural VHDL circuits on an Intel hypercube (8, 4). This

simulator, known as VSIM, uses the intermediate C source code created by the sequential

Intermetrics commercial simulator as shown in Figure 10 (4:21). To simulate a structural

VHDL circuit using VSIM, the Intermetrics sequential simulator compiles the VHDL

source code and creates an IVAN (Intermediate VHDL Attributed Notation) file

containing intermediate-form code descriptions of the circuit components. Next, during

the model generate phase, the Intermetrics simulator transforms the IVAN file into C

source code files and creates the corresponding object files (8). Using a tool called

pbuild, these C source code files (and their associated header files) are intercepted and

transformed into VSIM compatible files that can be executed in parallel (4:20).

VSIM is implemented to run over the SPECTRUM parallel simulation testbed which

manages the inter-process synchronization (4, 20). VSIM itself is independent of the

parallel discrete event simulation (PDES) synchronization protocol being used. To
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Figure 10. VSIM Parallel Simulation Session (4:2 1)

maintain continuity with prior AFIT research, this research uses the conservative Chandy-

Misra synchronization algorithm with null messages' to provide deadlock avoidance (7).

The structural descriptions and simple processes representing the VHDL subset

implemented by VSIM form "behavioral instances" which are partitioned into groups to

form Logical Processes (LPs) (4:21). The LPs are in turn partitioned among the available

processor nodes for parallel execution. Each LP contains a copy of the necessary

application code, the complete SPECTRUM code, and the machine dependent operating

system interface code (12). As shown in Figure 11, the SPECTRUM~ testbed provides an

interface between the application code and the machine dependent interface to the

operating system. As such, the SPECTRUM code provides the message sending and

receiving functionality by which two LPs communicate with each other. Variants of the

6 Null messages contain no signal change information. They exist for the sole pups of advancing the
simulation clock, and do not correspond to actual events in die physical system (7).
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SLogical Process (LP)

VSIM
(Application)

SPECTRUM

(Process Manager) Fiters

cube2.c
(Processor Interface)

hypercube

Figure 11. SPECTRUM Inteiface for a Single LP (4, 12)

simulation protocol used to maintain synchronization are implemented via filters as

shown in Figure 11 (4, 12). In the case of VSIM, the Chandy-Misra null-message

protocol is implemented via a filter called vhdlc locks.

In addition to running in parallel on an Intel hypercube, VSIM also has a sequential

mode which can be executed on a Sun Sparcstation. In fact, VSIM's parallel simulation

cycle is a direct extension of its sequential simulation cycle. Furthermore, prior to

executing VSIM on the hypercube, the circuit must be executed in the sequential mode

for at least one entire simulation cycle in order to extract the behavior numbers and inter-

dependency relationships. Therefore, this section begins with a discussion of the

sequential mode of VSIM. This is followed by an introduction to the SPECTRUM

parallel simulation testbed, which leads into a discussion of how the sequential simulation

cycle is extended in VSIM's parallel mode.

32.1 Sequential Simulation.

32.1.1 Data Structures. The four fundamental data structures used in VSIM's

sequential mode are directly derived from the commercial Intermetrics simulator and are

as follows (4:21-23):
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"* Dehavozal instances - Used to describe the input/output behavior of each

executable VHDL prmcess. A separate behavioral instance exists for each VHDL

behavior in the simulation, although a single execution routine may be shared by

several instances (4:21).

"* signal Record Table - Used to maintain the current state of each signal in

the simulation including pointers to behavioral instances in order to identify the

dependency connections for each signal (4:21-22).

"• Dhavior List - Used to maintain a list of all behavioral instances scheduled

for execution during the current simulation time. All behaviors are scheduled for

execution (i.e., placed in the behavior list) at simulation startup (t = 0) in order to

initialize the values of all signals. When a behavior is executed, it is removed

from the behavior list. A change in a signal value will cause all dependent

behaviors to be re-scheduled for execution (4:22).

" Active Record List - Used as a next-event list for the simulator. An

"event" is defined as the output of a behavioral instance execution routine that

may result in a signal change. Entries in the list are maintained in increasing order

of the simulation time associated with each scheduled event (4:23).

Figure 12 shows an example of the interrelationship of these fundamental data structures.

In this example, signal id 2 has an entry on the active record list because it is changing

values from a '0' to a '1' at simulation time 50. The active record list entry contains the

new value and a pointer to the specific signal record. The signal record contains pointers

to the signal's current value in main memory and the affected behavior instances -

behaviors 2 (AND gate) and 3 (XOR gate) in this example. These affected behaviors are

in turn added to the behavior list for execution at time 50 (4:23, 8:3-12). Note that the

entries in the behavior list contain pointers to the associated behavioral instances which in

turn contain pointers to the appropriate behavioral execution routine.
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Active Record L41t Simda Record Table
signa signal cunuv connec-

time 50 id size name value tios
sr.pt" 2
value '1' 0 1 Y 0 0,1S1 1 X 1 0,1
nexLsig.rec Null I2 1 I 2" 2,I3

3 1 COUT1 3' 4
.4 1 SUMI 4: 2,3

5 1 COUT2 5' 4
6 1 SUM 6:
7 1 COUT 7'

Behavior List Behavioral Instances -Ibeh 2m id 2IX
nexteA inpuO 2 COUT

UPIAIt 4 'COU77

beb 3 0input1 SUM1
NULL id 3

input1 4or•

id

exec OR
inputO 3 Main Memiory
inputl 5

Figure 12. Interrelationship of VHDL Simulation Data Structures (8:3-14)

32.12 Sequential Simulation Cycle. Figure 13 shows the VHDL simulation

cycle used in VSIM's sequential mode. The simulation main loop consists of calls to a

series of four specialized routines represented by the circles in the figure. Specifically, the

primary simulation routines are (4:25, 8:3-15):
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"* zsecute Debaviors - Executes behaviors on the behavior list and removes

them from the list. This is where the simulation loop begins.

"• Post - For each behavior that is executed, this routine posts the corresponding

event to the active record list.

" Geot Low Taei, - Extracts the entries from the active record list with the

lowest next-event time and updates the simulation clock to this lowest time value.

"* Compate values - For each entry that is removed from the active record

list, this routine compares the new data value in the active record list entry with

the current data value stored in memory for that signal. If there is no change in

data values, the event is ignored. If there is a change in data values, the affected

dependent behaviors are added to the behavior list and scheduled for execution

during the next simulation cycle.

As stated previously, all behaviors are added to the behavior list at simulation startup

and scheduled for execution at simulation time t = 0. In addition, the current

implementation of VSIM requires that all input signal changes be explicitly defined in the

VHDL source code. For example, complex processes which randomly generate a new set

of input signals during the course of the simulation are not supported by VSIM. As a

result of this, all input signal changes (i.e., those specified in the testbench) are added to

the active record list at simulation startup (4:26).

The simulation loop shown in Figure 13 continues until both the active record list and

the behavior list remain empty for an entire simulation cycle, at which point the

simulation is complete (4:26).

3.2.1.3 Handling Behavior Delays. Each behavior execution routine has a

nonnegative logical delay, tdelay, associated with it. When a behavior has a change on

one of its input lines at time t, it is scheduled for execution at time t. When a behavior is
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Figure 13. The Sequential VHDL Simulation Cycle (8:3-15)

removed from the behavior list and executed at time t, the resulting output signal is
posted to the active record list with a time-stamp of t + tdelay (4:27).

If a behavior has n input signals that change value at time t, the behavior will

execute n times and the resulting output signal will be posted to the active record list n

times. In this situation, the correct event will always be the one corresponding to the most

recent behavior execution. As a result, whenever a new event has the same behavior id

and time-stamp as another event on the active record list, the new event replaces the old

event (4:27).

There are two types of delay in VHDL - transport delay and inertial delay. With

transport delay, the output is a function of the input signals regardless of how long the

input signals hold their values. With inertial delays, however, the output function requires
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that the input signals maintain their values for a time equal to tdelay before the output

signal may change. This may result in an entry being removed from the active record list

if an input signal is not held constant for the required time (4:27). For example, consider

the AND gate in Figure 14. A time t = 3 ns, both input signals are '1', and an event for

signal Out to go from '0' to '1' at time t = 6ns is added to the active record list based

upon the output function of Out = In] AND 1n2 after tdelay. However, at time t = 5 ns,

input signal In2 returns to '0' before signal Out has changed values. As a result, the event

for signal Out at time t = 6 ns is removed from the active record list (4:28).

3.2.2 SPECTRUM Testbed. As shown in Figure 11, VSIM runs over the

SPECTRUM parallel simulation testbed. SPECTRUM allows the application to be

parallelized by dividing it into logical processes (LPs). The core of SPECTRUM, its "LP

manager" (file ip_man. c), manages communications between LPs. Function calls to

ip man. c are intercepted by a "filter" which provides the specific PDES synchronization

protocol being used (4:30). In the case of VSIM, the filter vhdlclocks. c implements the

delay = 3 ns

InOut

in2

I I ! ! I I I I
* I I I I I I I I I

I I I I I I I I I

Out

I I I I I I I I I

* I I I I I I I

ns
0 1 2 3 4 5 6 7 8 9 10

Figure 14. AND Gate with Inertial Delay (4:29)
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Figure 15. LP Message Receipt (4:35)

conservative Chandy-Misra null message PDES synchronization protocol. Below

SPECTRUM's LP manager, the package cube2. c provides the interface to the hypercube

operating system (4:31). As indicated by Figure 11, each LP contains its own copy of

both the application code and the SPECTRUM code. This includes the LP manager, the

protocol filter, and the operating system interface.

As shown in Figure 15, SPECTRUM maintains its own queue for incoming messages

destined for a given LP. Messages are stored in the SPECTRUM queue until requested by

the VSIM application. When VSIM checks for incoming events, messages on the

SPECTRUM queue are removed by the "receive filter." The receive filter eliminates

synchronization control messages (e.g., null-messages) and places only valid events in the
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LP's active record list (4:35). The "safe time" is used to control which events the LP may

safely process and will be discussed further in the next section.

The primary functions provided by SPECTRUM's LP manager are (4:30):

"• ip_init () - Initializes the LP and builds the appropriate filter tables.

"* lpget event -) Retrieves top event from SPECTRUM message queue.

" ip.post event () - Sends event to the owning LP of the affected behavior.

"* lpadvance_tim () - Advances the value of the local simulation clock.

"* Lp-temiaate () - Terminates the simulation.

3.2.3 Parallel VSIM Implementation.

323.1 Parallel Simulation Cycle. When the VHDL behaviors are partitioned

among multiple LPs, each LP assumes "ownership" for those LPs in its partition. In

VSIM's parallel mode, each LP executes the sequential simulation cycle of Figure 13 for

the behaviors it owns. However, because a signal change on one LP may affect behaviors

owned by another LP, the simulation cycle must be modified to allow an LP to forward

signal changes to other LPs.

Figure 16 shows the simulation cycle modified for parallel simulation. As before, all

behavior outputs are posted to the local active record list. When a signal record is

removed from the active record list and the value comparison determines that a signal

change has occurred, only the affected behaviors owned by the local LP are posted to the

behavior list. If the signal change affects behaviors owned by another LP, an event is

created and sent to the owning LP where it is eventually placed in that LP's active record

list. In this manner, only the results of behavior executions that result in actual signal

changes are forwarded to the affected LPs as event messages. Figure 17 shows the

parallel simulation cycle for two LPs.
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multi-processor, message-passing system with no shared memory. Running over the

SPECTRUM testbed, each LP executes an identical copy of the simulation on a disjoint

subset of the data (i.e., behaviors). Such a situation is referred to as a single

program/multiple data (SPMD) configuration (4:33). In this environment, the parallel

simulation cycle of Figure 17 presents an inter-U' synchronization problem caused by

dependencies between behaviors owned by different Uhs. As an example, consider the

hypothetical 2 LP partition for an edge-triggered D flip-flop shown in Figure 18. Each

LP maintains a separate simulation clock which maintains that LP's local virtual time

(LVT), and indicates how far along in the simulation each U' has proceeded to. In the

case of Figure 18, dLP only has four behaviors to execute as compared to six for LPe.

Thus, it is reasonable to expect that LPl may proceed at a faster rate than LPO. Let te and
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Figure 17. The Parallel VHDL Simulation Cycle for a Two LPs (4:34)

tj be the LVT of LP0 and LP1 respectively, such that tO <Rt. In this situation, it is

possible for LPO to send LP1 an event message with a time that is in LPI's past.

As discussed by Breeden, there are two basic approaches to handling this

synchronization problem. In the optimistic approach, LP1 would be rolled back in virtual

time to a previously saved state at a time equal or prior to the time of the incoming

message from LPO. The protocol gets its name from the fact that LP1 would be allowed to

proceed as fast as possible with the optimistic assumption that it will not get any late

messages from LP0. In the conservative approach, LP1 is not allowed to advance its

simulation clock to time q/ unless it is guaranteed that it will not receive any messages

with a time stamp less than tj (4).

Breeden discusses the mechanics of the conservative Chandy-Misra null-message

synchronization protocol used in this thesis research (4:11-13, 31-33). Since the null

messages add directly to the communications overhead of the partition, the rules for their

transmission~ are reviewed in the next section.
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Figure 18. Hypothetical 2 LP Partition for Edge-Triggered D Flip-Flop

3.2.33 Null Messages. In order to discuss the rules by which null messages

are transmitted, the following variables must be defined (4:32):

"* tn - time stamp of the null message.

"* tneq - lowest time stamp of all events in an LP's active record list.

" tdelay - logical output delay of an LP for a given output line.

" tsafe - local virtual time (LVT) that an LP may "safely" approach.

To maintain synchronization, each directed communication link, or line7, between

LPs has a clock associated with it which tracks the time-stamp of the most recent message

transmitted over that line. By definition, once a message is transmitted over a line with

time-stamp t, it is impossible for a message to be transmitted over that same line with a

7 The term line is used to refer to the directed arcs in the LP conectivity graph. This is not to be confused
with the arcs in the problem graph which represent inter-behavior dependencies. Given N LPs, each LP can
have at most (N- 1) output lines, but each output line may consist of multiple inter-behavior arcs.
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time-stamp less than t. The safe-time, isfe, is the minimum time of all input lines, and

represents the maximum time to which the LP may approach with the guarantee that no

messages will be received with earlier time-stamps. As shown in Figure 3.15, the safe-

time is updated each time an LP receives a message from another LP. This is

accomplished by comparing the updated time-stamps of each input line to find the

minimum. Null messages are used to advance the times associated with each line (thus

advancing tsae), and otherwise contain no useful information (4:32).

As implemented in the filter vhdlclocks .c, null messages are sent under the

following circumstances (4:32-33):

" By definition, an LP is constrained to process events in non-decreasing order of

simulation timestamps. As such, when an LP processes an event at time t, it is

guaranteed that it will not process an event in the future with a timestamp of less

than t. Therefore, when LPn sends an event message over one of its output lines

with a time-stamp of t, it sends a null message over all other output lines with a

time-stamp of t to let all other LPs know that they will not receive an event

message from LPn with a timestamp less than t. This allows them to advance the

clock associated with the input line from LPn to time t.

"* When there are no event messages waiting in the SPECTRUM input queue at the

time of a request by VSIM, the receive filter (see Figure 15) checks to see if there

is an event on the local active record list that has a time-stamp less than or equal

to the safe time (i.e., tneq • tsafe ). If so, a null pointer is returned to VSIM and

processing may continue. If not, the filter blocks, waiting for an incoming

message to advance the safe time. Prior to blocking, however, the LP sends a null

message over each of its output lines with a time-stamp equal to the smaller of the

safe time plus the LP delay for that output line, or the time at the top of the local

active record list (i.e., tmdlj = rain ((safe + tdelay ), tneq) ). These null messages
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serve as guarantees to the receiving LPs that no events prior to tdj will be

received from the sending LP. This allows the receiving LPs to update their safe

times, thus avoiding cyclical waiting and preventing deadlockL

In Breeden's version of this protocol, null messages were also sent over each LP

output line at simulation startup with a timestamp of that output line's delay value. The

purpose of these null messages was to advance the safe time of each LP beyond zero so

that each LP may begin processing events. These null messages have been eliminated

since all behaviors in the system are automatically scheduled for execution at simulation

startup.

32.4 Code Transformation. Circuit specific information is contained in the

intermediate C code created during the model generate phase of compilation as shown in

Figure 10. This circuit specific code includes routines to instantiate each behavior and

signal and to execute the behavioral output functions. Breeden defines a seven step

process by which this intermediate C code is transformed into code compatible with

VSIM (4:29-30).

3.3 Partitioning Requirements

3.3.1 Load Balancing. Load balancing is defined as the degree to which all

available processors are assigned an equal share of the computation load (26:59). In

parallel VHDL simulations, the computation load consists of processing signal changes,

scheduling the affected behaviors, and executing the affected behaviors (which in turn

may cause further signal changes). One method of measuring load imbalance is to

calculate the difference in the minimum and maximum finishing times of all processors as

a percentage of the maximum finishing time (26:59):
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However, this measure of load imbalance is only valid if all processors are able to

perform their share of the workload completely independent of the others. In most

parallel simulations, there exist dependencies between the workloads that have been

assigned to different processors. For example, consider the example VHDL simulation of

Figure 19 in which an edge-triggered D flip-flop has been partitioned into three LPs. LPO

has ownership of eight behaviors, versus one each for LPI and LP2. Intuitively, LPO will

process a majority of the signal changes and behavior execution routines. Thus, LPO has

been assigned a clear majority of the computation workload. However, because of inter-

behavior dependencies which cross partition boundaries, LPI and LP2 cannot complete

their share of the computation load until they receive the last event message from LPO. As

a result, while LPO is processing a large number of events, LPI and LP2 spend time

blocking for inputs from LPO. All three LPs will finish at approximately the same time

(with LPO finishing slightly ahead of the other two), even though LPO had a much greater

share of the computation load.

For parallel VHDL simulation, an alternative method of measuring load imbalance is

required. The method proposed in this thesis uses the following definitions:

bi= behavior i.

wi = relative computation cost of behavior i.

Bq = set of all behaviors assigned to LP q.

Lq = the total computation load of LP q.

Lm = the maximum computation load of all LPs.

Lavg = the average computation load of all LPs.
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Figure 19. Load Imbalance Example

With these variables, the computation load for each LP can be calculated as:

L= b,w,
b,iBq

And the load imbalance factor, Hb, can be calculated as:

Hb = La

The relative computation cost of each behavior, wi, is actually composed of two

components: the relative computational complexity of behavior i, and the relative

frequency that behavior i is executed during the simulation. In VSIM, all behaviors are

simple VHDL processes.8 Intuitively, the major difference in the computational intensity

of these simple VHDL processes is in the number of input signals to be evaluated. If the

number of behavior ir, .. 5 is kept relatively small (e.g. < 4), these computatior*1

8 Simple boolean operation (AND, OR, NOT, assignment, etc.) with a finite number of inputs.
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differences will be negligible when compared to the computation requirements of more

complex VHDL processes (such as a bus resolution function with 32 inputs). As such, the

relative computational complexity of all behaviors representing simple VHDL processes

can be safely assumed to be equal.

The relative frequency with which a behavior is executed is heavily dependent upon

the activity9 of its input signals during the simulation (23:85). Experience has shown that

the signal activity of a typical VHDL circuit is not evenly distributed. However, prior to

simulation, no data is available regarding signal activities (23:85). Since no information

is available to support a specific behavior weighting, all behaviors are assumed to be

equally affected by the circuit signal activity.

Since behaviors cannot be differentiated in terms of computational complexity or

execution frequency, all behaviors are evenly weighted (wi = 1), and all mapping

decisions must be made solely on the static inter-dependency structure of the VHDL

circuit (23:85). Therefore, the computation load Lq is simply calculated as the number of

behaviors assigned to LP q.

3.3.2 Minimizing Communications Costs. Inter-process communications can be

defined as the sending of information from a source process to a destination process with

the destination process requiring the sent information in order to progress. In VSIM, each

behavior is a simple VHDL process, and the sending of a signal change from the output

of one behavior to the input of another behavior is one form of inter-process

communications. In VSIM's sequential mode, this form of inter-process communications

consists of inserting a record in the behavior list as shown in Figure 13. In VSIM's

parallel mode, this form of communications is identical if the receiving behavior is

owned by the same LP as the sending behavior. However, if the sending and receiving

9 The activity of a signal is defied as the number of events generated for that signal during the simulation
(23:85).
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behaviors are owned by different LPs, the signal must be sent as an inter-LP event

message using the SPECTRUM layer as shown in Figure 17. The insertion of the record

into the behavior list occurs at the receiving LP after the event message has been removed

from the receiving LP's SPECTRUM incoming message queue. Thus, the sending and

receiving of inter-LP event messages by SPECTRUM represents a communications

overhead not present in the sequential simulation.

In parallel VSIM, communications between behaviors that are owned by the same LP

do not represent additional communications overhead over the sequential version, and are

said to have a cost of zero. Rather, the communications overhead that we are interested in

minimizing is the inter-LP event message traffic that occurs when communicating

behaviors are owned by different LPs. Throughout the remainder of this thesis, the term

inter-process communications will be used to describe this message level

communications between the logical processes. With the previous assumption of one LP

per physical processor, this inter-process communications is also equivalent to the inter-

processor communications, and the two terms can be used inter-changeably to refer to

the communications overhead of the parallel simulation.

3.3.2.1 Modeling Inter-Process Communications. The model used to

represent inter-process communications used in this thesis makes use of a

Communications Weight Matrix, and the following definitions:

wij = the relative cost of communications between processor i and processor j based

upon the topological layout of the processors.

aij = the number of directed inter-behavior dependencies (i.e. arcs) between LPi

and LPj.

With these definitions, the total cost of directed communications from LPi to LPj, Cij, can

be calculated as:
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C, = a, w,

Ideally, each arc that makes up the factor aij would be multiplied by a factor that accounts

for the frequency of the communications over that arc. However, the frequency of

communications is dependent upon the signal activity, and, as stated in section 3.3.1,

there is no information available regarding signal activity prior to simulation (23:85).

Therefore, the communications costs must be estimated based upon the known structural

dependencies that cross the LP boundaries. In addition, the assumption that LPO will be

mapped to processor 0, LP1 will be mapped to processor 1, etc., is implicit in the

equation for Cij.

Letting n be the number of logical processes (LPs), the inter-process communications

can be represented by an n x n communications weight matrix as shown in Figure 20. The

main diagonal entries represent the cost of an LP's communications with itself. As stated

previously, these communications do not involve the sending and receiving of event

messages, and thus do not contribute to the parallel simulation communications overhead.

Therefore all main diagonal entries are always 0.

Letting Hc represent the overall total inter-process communications costs, it can be

calculated as the sum of the entries in the communications weight matrix:

n-1 n-1
Ho= XXCY

i-0 j=0

With the exception of a constant factor of 1/2, this equation is identical to the equation

used by Bultan to calculate the communications cost sub-function I-c in the mean field

annealing algorithm discussed in section 2.4.11 (5:296).

Upon further examination, however, a potential problem arises because Hc does not

give an acrurate picture of the total inter-process communications relative to the total

signal change activity of the circuit (as estimated by the number of inter-behavior arcs).

For example, if circuit A has a total of 1,000 inter-behavior arcs with 100 crossing LP
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Figure 20. Communications Weight Matrix for n LPs

boundaries and circuit B has a total of 10,000 inter-behavior arcs with 500 crossing LP

boundaries, circuit B will have a higher Hc than circuit A even though it has a smaller

percentage of its arcs crossing the LP boundaries. To account ,xr this, it is desirable to

calculate the total inter-process communications costs as a percentage of the total

communications costs in the system. Thus, the equation for i-c is modified as follows:

Z~c,
Hc 1-0 j-0

num_ arcs

where numarcs is the total number of inter-behavior arcs in the system. Minimizing the

value of I-L is one of the primary goals of the partitioning algorithms implemented for

this thesis.

3.3.2.2 Distribution of Communications. In addition to the amount of inter-

process communications, the distribution of those communications may also add to the

overhead of the parallel simulation. For example, consider the four LP examples of

Figure 21 in which it is assumed that all LPs are assigned an equal share of the

computation workload. In Figure 21.a, LP2 and LP3 run independently of all other LPs,

while there is a relative communications cost factor of 100 from LPO to LPI. As a result,

LP2 and LP3 will finish in minimal time while LP1 cannot finish ahead of LPO because
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Figure 21. Communications Distribution Example

of the inter-LP dependencies. In this case, the communication costs between LPO and LPI

form a bottleneck which holds up overall simulation completionl 0 . In Figure 21.b, the

problem has been repartitioned in order to split up the communications bottleneck

between LPO and LPI at the expense of a higher total communications cost. Although the

overall communications costs are higher, the simulation should reach completion faster

because of the reduced bottleneck in the communications costs.

The results presented in Chapter 5 show that in some circumstances, it is possible to

partition a circuit such that the total amount of inter-process communications is reduced

by more than 33%, but the resulting simulation performance is worsened with strong

evidence that this is due to a bottleneck in the distribution of the remaining inter-process

communications. As a result, the calculations for the total communications cost overhead

in this thesis include an additional factor in order to account for the distribution of the

inter-LP dependencies in the circuit partition.

10 Simulation completion is defined as the completion time of the slowest logical process.
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The calculation of the communications distribution factor Hld uses the following

assumptions and definitions:

Message setup and transmission time is much more significant than the time it

takes to receive an incoming message. This assumption is based upon an analysis

comparing the overhead involved in sending vs. receiving an inter-processor

message. A message receive action involves inserting the message in a queue

where it is held until actually needed by the simulation. On the other hand, a

message send action involves the message setup and transfer times, as well as

blocking time while the sending processor waits for a free communications link.

Intuitively, the sending processor has a greater level of overhead. Instrumentation

of the simulation is required in order to fully validate this assumption.

An LP's contribution to the total communications cost overhead is directly

proportional to the total weighted communications costs associated with all arcs

leaving that LP. This is represented by the sum of the row in the communications

weight matrix corresponding to that LP.

Davg - the average weighted communications costs associated with each LP.

Dmax - the maximum weighted communications costs associated with an LP.

The communications distribution factor is then calculated as the maximum positive

deviation from the average as a percentage of the average:

d=D - Oav
Hd= D,,g

3.323 Effect of Lookahead. Simulation lookahead is defined as the ability

to predict what will happen or not happen in the future with complete certainty. A process

at simulation time t with lookahead tL will be able to accurately predict all events it will

generate up to simulation time (t + tL) (11:9). In the case of VSIM, an LP's lookahead
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refers to the ability io predict a simulation time in the future up to which that LP can

guarantee that it will generate no signal changes destined for other LPs. The LP's

lookahead is defined by nin ((tsafe + tdelay ), tneq).

As discussed in section 3.2.3.3, the value tdelay is defined as the minimum output

delay associated with each of the LP's output lines. These delay values are specified in a

".arcs" file that is read in by VSIM at runtime. In previous research, a ur,-form LP delay

time was used that was equal to the smallest non-zero delay in the circuit associated with

a single behavior (4). In order to guarantee optimal LP delay values, however, this thesis

uses the minimum path from all possible LP input lines and all source behaviors in the LP

to each LP output line in calculating the corresponding output line's delay value. For a

random partition, this method generally results in no net improvement in the lookahead of

the circuit. However, for more sophisticated partitioning algorithms, .arcs files with

larger LP delay values can be obtained. When (1safe + tdelay ) < tneq, a larger delay value

will result in a null message with a higher time stamp being sent. In turn, this will result

in fewer null messages being sent over that output line, and may allow the safe time of

the receiving LP to advance at a faster rate. More discussion of the effect of increasing

the lookahead of the circuit is presented in Chapter 5.

3.3.2.4 Null Messages. In VSIM, the conservative Chandy-Misra

synchronization protocol adds additional communications overhead in the form of null

messages which transmit no useful information 11 . As discussed in section 3.2.3.3, null

messages are sent according to the given set of rules in order to avoid deadlock by

updating the safetimes of the receiving LP.

Analysis of the rules for sending null messages shows that the number of null

messages transmitted is primarily dependent upon the number of arcs in the LP inter-

1 As opposed to real messages which transmit actual signal value information.
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connectivity graph (i.e. the number of output lines as specified in the associated .arcs

file). This is also equivalent to the number of non-zero entries in the communications

weight matrix. Other factors which also have an effect on the number of null messages

sent are the minimum LP delay values specified in the .arcs file, and the number of inter-

behavior arcs which cross LP boundaries.

The simulation results presented in Chapter 5 show that the ratio of null messages to

real messages in a simulation grows with the number of processors, with null messages

dominating the communications costs for partitions with more than 2-4 LPs for the

circtls used in this thesis. For example, for the wallace tree simulation with a random

partition, the null message to real message ratio goes from approximately 1:4 with 2 LPs

to approximately 5:1 with 8 LPs. The equations in sections 3.3.2.1 and 3.3.2.2 for Hc and

Hd do not directly account for the transmission of the null messages required to maintain

simulation synchronization. Therefore, an additional cost factor is needed to take into

account this sizable overhead.

Letting Lares be the amount of lookahead in the .arcs file, and Oarcs be the number

of LP output lines specified in the .arcs file, the null message communications factor can

be defined as:

H, = L.,$ Om,

The dependence of the number of null messages on the number of inter-behavior

dependencies that cross LP boundaries is included in Hc, and is not included again in Hn.

Given N LPs, each LP can be connected to at most N-1 LPs. Thus, the limit on the

value of Or= is given by:

O., _ N(N-1)

The value of Lares is normalized to 1.0 for the case when all LP delays in the .arcs

file are equal to the smallest non-zero behavior delay in the system. Letting the smallest
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non-zero behavior delay in the system be called the normal lookahead, the value of Lwa

can be calculated as:
Lam3 = normal lookahead

actual average lookahead

If the actual average lookahead is made to be smaller than the normal value, 1,0s will be

greater than 1.0, thus compounding the impact of Oams on the total communications

costs. On the other hand, if the actual average lookahead is larger than the normal value,

La will be smaller than 1.0 and the effect of ON= will be abated.

It should be noted that because the LP delay is not always used in computing the

timestamp of a null message (i.e. when tmq < ts* + tdelay ), the value of , will only

provide an estimate of the effect of increased lookahead on the null message overhead.

For this reason, a better estimate of the impact of increased lookahead can be calculated

by making a reasonable assumption regarding the percentage of time that the delay value

determines the timestamp of a null message. The assumption used in this thesis is 50%,

resulting in the lookahead increase being cut in half. It should be noted that the uneven

distribution of signal activity in the circuit will affect the accuracy of this assumption.

However, chapter 5 includes data on the effect of increased lookahead which shows this

assumption to provide good estimates under most circumstances The equation of LOW is

adjusted as follows:

norm lookahead
L'•s = (norm- lookahead - avg. lookaheud + avgd lookahead

3.33 Balancing Load Imbalance and Communications Costs. Intuitively, there is

a natural conflict between the partitioning goals of minimizing the inter-process

communications costs and assigning each LP an equal share of the computation load. For

example, by assigning all 10 behaviors in Figure 18 to LPO, the inter-process
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communications costs can be eliminated completely. However, the problem is reduced to

a sequential simulation with LIO carrying the entire computation load while LPI sits idle.

On the other hand, making the partition as shown in Figure 18, the simulation is closer to

being balanced in terms of computation load at the price of adding inter-process

communications costs.

The primary goal of any partitioning algorithm is to strike a balance between these

two conflicting goals that results in a good simulation performance. The exact nature of

this balance, however, is dependent upon the relative performance of the CPU and

communications subsystem of the hardware platform being used.

3.3.4 Measuring the Cost of a Partition. Measurement of the simulation

performance resulting from a given partition is the ultimate method of determining the

quality of a partition. However, many partitioning algorithms, including the one

implemented in this research, require an interim assessment of the quality of the partition

at various points in the algorithm. To achieve this interim assessment, an objective cost

function is used similar to the one used for the mean field annealing algorithm described

in section 2.4.11.

3.3.4.1 Objective Cost Function. The objective cost function is composed of

the factors for load imbalance and communications costs discussed in sections 3.3.1 and

3.3.2. Specifically, the objective cost function H is defined as:

H = IH,,HC(1 + Hd) + allb

where a and B are constant coefficients which control the relative influence of the

communications and load balancing portions of the equation.
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3.3.42 Reladonship to Simuladion Performance. One of the objectives of this

research was to quantify the relationship between the quality of a partition and the

resulting performance of the simulation. The performance of the simulation is measured

in terms of speedup, which is defined as the ratio of the execution time on a single

processor to the execution time on P processors (26:65):

Speedup = S =

Ideally, the time to execute on P processors will be 1/Pth the time to execute on a

single processor, giving a speedup of P:

tMPIGCMW = P =p

_ _ _MS 1

In general, however, the simulation overhead will prevent the achievement of a speedup

of P on P processors. As discussed previously, the simulation overhead is directly related

to the quality of the simulation partition as measured by the objective cost function H. It

is possible to estimate the expected simulation speedup by relating the cost function H to

the speedup Sp as follows:

P P

1 + yH 1 + y[/H HH (1 + Hd) + a Hb]

where y is a constant coefficient. Note that in a perfect partition (i.e. no inter-processor

communications and equally balanced loads), the cost function will equal 0 and the

speedup will be equal to the number of processors. In addition, note that if (1 + Y H)

increases at a faster rate than P, then the estimated speedup will decrease as the number of

processors is increased.

58



3.4 Partitioning Approach

The primary partitioning algorithm implemented in this thesis, referred to as AB-

Annealing, draws upon several properties of the partitioning strategies presented in

section 2.4. AB-Annealing is a multi-phased partitioning strategy with the following

steps:

"* The graph is partitioned into strong-components.

"* Treating the strong components as indivisible blocks, the graph is divided into the

required number of LPs using a deterministic graph-traversal algorithm.

"* Given the initial partition from the previous step, those behaviors that lie on the

boundary between two LPs are considered for reassignment to a different LP on a

priority basis based upon the potential reduction in the objective cost function.

The phased approach to the mapping problem used here is similar to the phased

approaches used in the Two-Dimensional Algorithm of section 2.4.5 (22) and Algorithm

H of section 2.4.7 (16). The initial partition step uses a simple graph-traversal algorithm

which has many similarities with the Depth-First Breadth-Next algorithm of section 2.4.8

(17). The final step implements a "border-annealing" algorithm in an attempt to

iteratively improve the partition by making behavior reassignments that result in a

decrease in the objective cost function. The objective cost function and iterative nature of

this phase make it similar to a deterministic version of the Mean Field Annealing

algorithm of section 2.4.11 (5). However, the fact that only those behaviors that lie on the

border between two LPs are considered for reassignment also makes this phase similar to

the Two-Dimensional Algorithm of section 2.4.5 (22).

3.4.1 Strong Components. The first step of the AB-Annealing process involves

finding the strongly connected components of the problem graph. Each strong component

in the problem graph corresponds to a complete feedback loop in the VHDL circuit. This
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Figure 22. Strong Component Example - Simple Latch Feedback Loop

step is included in order to isolate the feedback loops in a single LP during the initial

partition. An example strong component common in digital circuits is shown in Figure

22. The problem graph in the example represents a simple latch with a two-behavior

feedback loop.

3.42 Initial Partition. In the Mean Field Annealing algorithm, the initial partition

is determined with a random function. In the AB-Annealing algorithm, it was desired to

use the available knowledge about the structure of the circuit in an effort to make a good

first-cut partition. It was anticipated that this approach, in addition to being deterministic,

would reduce the amount of work necessary during the annealing phase as well as lead to

a better final partition. Two variations on the DFBN algorithm of section 2.4.8 have been

implemented to serve as the initial partitioning routines for the AB-Annealing algorithm.

In the first algorithm, referred to as Simple Depth-First (SDF) partitioning, the

problem graph is traversed in a depth-first manner. When a behavior is visited for the first

time, it is added to the current partition and marked so that it will not be added to any

other partitions. Before beginning a partition, its size is pre-determined using the number

of unmarked behaviors divided by the number of unfilled partitions. If a newly visited

behavior is part of a strong component, the entire strong component is added to the

current partition. When the current partition is full, a new partition is started.
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The second algorithm, referred to as Simple Breadth-First (SBF) partitioning, the

problem graph is traversed in a breadth-first manner, but the partitions are built in the

same way as with the SDF partitioning.

For comparison purposes, the random partitioning algorithm can also be used to

generate the initial partition for the AB-Annealing algorithm. In the random case,

however, the first step of finding the strong components has no meaning and is omitted.

3.4.3 Border-Annealing. The third and final phase of the AB-Annealing

algorithm consists of an iterative improvement of the initial partition through selective

reassignment of certain behaviors that lie on the border of the partition. This phase is

referred to as "border-annealing," and involves the following steps:

" Calculate the priority of each behavior based upon the following formula:

Priority = MaxExternalArcs - LocalArcs

where LocalArcs represents the number of input and output arcs of the given

behavior that are to or from behaviors in the same partition, and MaxExternal_

Arcs is the maximum number of input and output arcs of the given behavior that

are to or from behaviors in any single partition other than the given partition.

"* Place each behavior with a priority > 0 in an annealing queue in decreasing order

of priority. By definition, this eliminates from consideration all behaviors that are

not on the border of a partition (such behaviors will have a priority < 0).

"* Remove each behavior from the queue in priority order and evaluate the effect of

all possible moves on the objective cost function.

• * Based upon the data produced in the previous step, select the best move that

will not cause the load delta factor to become larger than the maximum load

imbalance tolerance (user defined input parameter). It is possible that no move

may be selected.
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* • If a move is selected, carry out the move and update the data structures used in

the calculation of the objective cost function.

* Repeat the above steps until the maximum number of iterations (user defined

input parameter) has been reached, or until no more improvement can be made.

3.4.3.1 Selecting Moves for Consideration. In the AB-Annealing algorithm,

behaviors are selected for potential LP reassignment based upon their priority. Using the

behavior prioritization scheme discussed above, behaviors that have no input or output

arcs which cross an LP boundary will not be considered for moving. In addition,

behaviors which have more input and output arcs that stay within its own LP than go to

any single external LP will also be eliminated from consideration.

Figure 23 shows several examples of behavior priorities. In Figure 23.a, behavior 3 in

LPO has two arcs connected to behaviors in LP1, but only one arc connected to a behavior

in its own LP. Thus, behavior 3 has a priority of +1, and will be queued up for move

consideration. In Figure 23.b, the two external arcs of behavior 3 are connected to two

different LPs. The maximum number of external arcs to a single LP is 1, and the priority

of behavior 3 is 0. In this situation, a move can be made to improve load balancing, or

some other factor, without any net change in the number of inter-LP arcs. In Figure 23.c,

behavior 3 has more arcs connected to behaviors in its own LP than any other LP. Thus,

its priority is negative, and it will not be placed in the annealing queue for move

consideration.

Figure 24 shows the actual SDF initial partition for the edge-triggered D flip-flop

circuit. The behaviors that lie on the boundaries of the partitions are highlighted. The

priorities for each behavior are listed in Table 1. Note that in this example, only behavior

8 has a nonnegative priority. Thus, only behavior 8 will be considered for LP

reassignment.
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Figure 23. Example Behavior Annealing Priorities

63



LPO

LPI

Figure 24. SDF Initial Partition for Edge-Triggered D Flip-Flop

Table 1. Behavior Priorities for the Partition of Figure 24

Behavior Max External Arcs Local Arcs Priority
0 - _0 3 -3
1 1 4 -3
21 4 -3
31 3
41 3 -2
5 1 3 -2

-6, 0 1-
7 0 1-
8T 1 0 +1
9 0 2 -

Because a selected move may effect the priority of other behaviors in the annealing

queue, it is not possible to select more than one move at a time. A behavior can only be

fully evaluated regarding all prospective moves when it reaches the top of the annealing

queue. The idea behind using the annealing queue is to narrow down the set of behaviors
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that must be evaluated to only those that have a good chance of qualifying for a move.

Under this approach, it is possible that a selected move will cause the priority of a non-

queued behavior to become nonnegative. In this situation, the affected behavior would be

queued during the next iteration. The alternative to this approach would be to iterate

through all of the behaviors after each move, selecting the single best candidate behavior.

This approach has two disadvantages. First, it is computationally more expensive,

requiring O(NP2) worst case per potential move, vs. O(P2 ) (note that N is the number of

behaviors and P is the number of logical processes). Second, a complex scheme of

tracking which behaviors have been considered 1or reassignment must be implemented

along with a prioritization mechanism to prevent the starvation of low priority behaviors.

3.4.3.2 Solution Convergence. The iterative border-annealing process

described above continues until one of two things occurs:

"* The algorithm converges to a solution in which no more progress can be made.

This is indicated by an entire iteration in which no moves are selected.

"• The maximum number of iterations is reached.

"• A specified number of consecutive iterations are processed with no net

improvement in the objective cost function.

To allow for the evaluation of slight variations in the annealing process, three values

are taken as modifiable input parameters to the annealing algorithm:

"• Numiterations - defines the maximum number of annealing iterations to

perform before terminating the process.

"* Max WorthlessIterations - defines the number of consecutive iterations

with no net improvement in the objective cost function which can be processed

before the annealing process is terminated.
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Load_ Ibal_Tol - defines the maximum value of the load delta factor that is

acceptable. Moves which cause the load delta factor to be larger than the

LoadImbalTol will not be made, even if they lower the overall inter-process

communications costs.

3.4.4 Topological Variation. As discussed in section 2.2.1, topological variation

arises when the inter-dependency structure of the parallel application differs from the

inter-connectivity structure of the parallel system (2). In the case of VSIM, grouping the

circuit behaviors into logical processes (LPs) does not eliminate the problem of

topological variation, as the inter-connections between the LPs may still differ from the

inter-connectivity structure of the hypercube.

Figure 25 shows the interconnection structure of an 8 node hypercube. In a hypercube

architecture, each of the P processors has log2 P nearest neighbor processors with which

it shares a direct communications link. In order for a processor to communicate with a

processor that it is not directly connected to, the communications must be routed via one

or more intermediate processors. In theory, the longer the communications path and the

greater the number of intermediate routing processors, the higher the communications

costs. As a result, it is desirable to assign the LPs to physical processors in such a way

that the number of inter-LP connections which correspond with single-hop (i.e., direct)

physical connections is maximized.

To address these topological concerns, two additional features have been added to the

parlitioning algorithm as menu selectable options. The first deals with the order in which

the LPs are built during the SDF and SBF initial partitions. This option is based upon the

assumption that LP0 will be assigned to processor 0, LP1 will be assigned to processor 1,.

and LPpI. will be assigned to processor P-1. When performing the initial SDF or SBF
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Figure 25. Topological Layout on Hypercube Connectivity Graph

partitionings, the default ordering for assigning behaviors to LPs is to begin with LP0 and

proceed in a straight numerical ordering to LPp.1 (e.g. 0-1-2-3-4-5-6-7).

The potential problem with this approach lies in the fact that with the SDF and SBF

partitionings, there is a tendency for LPn to have a large number of connections 12 to

LPn+i. However, in a hypercube architecture, direct connections are determined by the

binary representation of the processor numbers, and processors n and n+l may not be

directly connected. Specifically, only those processors whose binary representations

differ in a single bit position are directly connected. If processor n and processor n+l are

not directly connected, then this situation will result in an increase in the amount of multi-

hop communications. For example, if LP1 has a connection to LP2 (assigned to

processors 1 and 2 respectively), each message from LPl to LP2 will traverse two

physical communication links because processors 1 and 2 are not directly connected in a

hypercube architecture. This is show graphically in Figure 25.a.

In an attempt to minimize the amount of multi-hop communications, an alternative LP

assignment ordering is used based upon a path through the hypercube in which each

subsequent processor has a binary representation that differs from the previous one by a

12 Here, the term connection corresponds to an inter-behavior arc that crosses LP boundaries.
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single bit position (e.g., 0-1-3-2-6-7-5-4). This is shown graphically in Figure 25.b.

However, such a path only exists if the number of processors is a power of 2. In those

circumstances where the number of processors is not a power of 2, the "extra" processors

will be assigned in a straight numerical order. For example, the assignment ordering for

12 processors will be 0-1-3-2-6-7-5-4-8-9-10-11. Note that in a random partition, this

option has no meaning and is ignored.

The second feature which has been added as a option to address topological concerns

is the ability to weight inter-LP arcs based upon the number of hops in the corresponding

physical communications link. When activated, this option will have no effect upon the

initial SDF or SBF partitions, but will influence behavior reassignment decisions in the

border-annealing process. The net effect will be a tendency to reduce the number of

multi-hop communications at the potential cost of an increase in the amount of single-hop

communications.

3.5 Summary

This chapter discussed the partitioning objectives of achieving a balanced

computation load while minimizing the inter-process communications overhead.

Equations for modeling the quality of a partition as it relates to these objectives was

proposed. The model proposed for measuring the inter-process communications overhead

takes into account the additional message traffic caused by the conservative null-message

protocol. The communications overhead cost is combined with a factor that accounts for

load imbalance to create an objectivze cost function for the partition. A multi-phased

partitioning algorithm is then proposed with the objective of minimizing the objective

cost function.

The next chapter presents the detailed implementation of the proposed partitioning

algorithm, and discusses the primary test cases used in this thesis.
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IV. Implementation

4.1 Overview

This chapter presents a high-level discussion of the implementation of the VHDL

Graph-Partitioning Tool (GP-Tool). It also discusses the primary VHDL circuits used as

test cases in order to validate the partitioning strategies implemented as part of this thesis.

A complete GP-Tool user's guide and a more detailed discussion of the GP-Tool

implementation can be found in Appendix C.

42 VSIM Graph-Partitioning Tool (GP-Tool)

The VHDL Graph-Partitioning Tool (GP-Tool) implemented in this thesis is an

extension of the partitioning utility VHDL Graph Searching Program implemented

during previous ART research. It was written13 in order to provide a random distribution

of the circuit behaviors among a desired number of LPs. The following sections present

an overview of the additional functionality added to GP-Tool as part of this thesis. More

information can be found in Appendix C.

4.2.1 Implementation Environment. GP-Tool is implemented in the Ada

programming language using the Sun Ada Compiler, version 1.1. The algorithms

implemented in GP-Tool are all sequential, with Sun workstations as the target platform.

The original source code was written in a procedural fashion (i.e. not object-oriented),

and made heavy use of Ada generics to provide the underlying data structures and data

structure manipulation routines. The current version of GP-Tool is also written in a

procedural fashion. In addition to allowing maximum reusability of the original source

13 By AFIT instructor Maj Eric R. Christensen, USA.

69



9 ETDFFTESTBENCH(STRUCTURAL) 0 1 2
8 ETDFFTESTBENCH(STRUCTURAL) 0 3
7 ETDFF(STRUCTURAL) 0
6 ETDFF(STRUCTURAL) 0
5 NANDGATE(SIMPLE) 3000000 4 7
4 NANDGATE(SIJMPLE) 3000000 5 6
3 NANDGATE(SIMPLE) 3000000 0 2
2 THREEINPUTNANDGATE(SIMPLE) 3000000 3 5
1 NANDGATE(SIMPLE) 3000000 0 2 4
0 NANDGATE(SIMPLE) 3000000 1

Figure 26. GP-Tool Input File for Edge-Triggered D Flip-Flop

code, procedural programming is the preferred methodology for routines that are

computationally intensive, such as the AB border-annealing algorithm (24:24). Appendix

C details the relationship between the original (unmodified) Ada packages, the modified

Ada packages, and the new Ada packages which comprise the current version of GP-

Tool.

42.2 Input and Output Files. At application startup, GP-Tool will prompt the

user for the name of the desired input file. The input file can be created manually for

trivially small circuits. For larger circuits, the VSIM utility vmap can be used to create the

correct file (see Appendix B more information on vmap). This file lists the behaviors in

the circuit and describes the behavior inter-dependency relationships. Each line in the

input file must be of the following format:

behav.id behavname behavdelay [optional list of dependencies)

where all values are nonnegative integers except behavname which is a string of no

more than 80 characters. Figure 26 shows an example input file for the edge-triggered D

flip-flop of Figure 18. Note that behaviors 6 through 9 have zero delays.

There are numerous output files that can be produced by GP-Tool. Of these files, the

two most important are the behavior-to-LP mapping file (lpx . map) and the logical
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process (LP) dependency file (ipx. arcs) which are required for the parallel execution of

VSIM. The first file maps each behavior to an "owning" LP, while the latter file defines

the inter-dependency relationships of the LPs in the system.

In the original version of GP-Tool, the ipx. map describing the random partition was

produced directly by GP-Tool, but the ipx. arcs file was not. Instead, an intermediate

file was produced which, along with the ipx.map file, was used as the input to a separate

utility application (build arc) which produced the appropriate lpx.arcs file. However,

the build-arc utility was unable to handle the large circuit description files which

comprised the primary test cases used in this thesis. To circumvent this problem, the

current version of GP-Tool directly produces the ipx. arcs file corresponding to each

Ipx. map file. The specific format specifications for the ipx. map and ipx. arcs files are

discussed in section B.4.1 of Appendix B.

The other output file which is of primary interest is the partition statistics file which

provides a large amount of information about the quality of the resulting partition.

Among the information reported is the number of inter-component arcs, the

communications cost factor (Hc), the communications distribution factor (Hd), the

number of LP output lines (Oar), the load delta factor (fib), the communications weight

matrix, and a list of the behaviors assigned to each LP. This information is provided to

facilitate the comparison of the quality of different partitions. This file is produced

automatically for each partition generated, but is not required by VSIM.

An example partition statistics file is shown in Figure 27. This figure shows a Simple

Depth-First (SDF) partition for the Wallace-Tree multiplier with 4 LPs. The top portion

of the file gives the general information about the input problem-graph. Specifically, it

lists the name of the input file and the number of vertices and arcs in the problem graph.

The middle section lists detailed information about the partition, beginning with the name

of the partitioning algorithm used. The other values presented are as follows:
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" number of coqmpomnt - Gives the number of LPs in the partition.

"* xntez-cmpoennt area - Gives the total number of inter-behavior arcs which

cross LP boundaries.

"• iwght_IntezL•_arcs - Represents the inter-component arcs with each arc

multiplied by the hop-weight of the corresponding physical communications link.

This is equivalent to the sum of the entries in the communications weight matrix.

If all arcs are evenly weighted with a value of 1.0, this figure will be the same as

the previous item.

"• Avg lght Arc, - Represents the average output arc weight for each LP

(Wght_InterLP Arcs divided by the number of LPs). This is equivalent to the

average of the row sums in the communications weight matrix.

" Strderv wght .Out Arcs - Represents the standard deviation of the output arc

weights for each LP. This is equivalent to the standard deviation of the row sums

of the communications weight matrix.

"* uazdev_.Wght_out_ Arcs - Represents the maximum positive deviation of the

output arc weights for each LP. This is equivalent to the maximum positive

deviation of the row sums of the communications weight matrix.

" Stdd,,v. .WhtI_.zk..Arco - Represents the standard deviation of the input arc

weights for each LP. This is equivalent to the standard deviation of the column

sums of the communications weight matrix.

"*mazdev_light_zIn.Arcs - Represents the maximum positive deviation of the

input arc weights for each LP. This is equivalent to the maximum positive

deviation of the column sums of the communications weight matrix.
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GRAPH INFORMATION - wallace.vmap

The number of vertices in this graph is : 1050
The number of arcs in this graph is 1770

PARTITION INFORMATION - Simple Depth-First (SDF) Partitioning

Number of components : 4
Inter-component arcs : 312

Wght InterLPArcs : 312.0
AvgWghtArcs 78.0
StddevWghtOut_Arcs : 66.5
MaxdevWghtOutArcs : 89.0
Stddev_WghtInArcs : 46.6
MaxdevWghtInArcs : 49.0
Comm CostFactor : 17.63 %
Comm DistFactor : 114.10 %
LPOutputLines : 11
LookaheadFactor : 0.667

AvgCompLoad : 262.5
Stddev_Comp Load 0.6
Maxdev_Comp Load 0.5
LoadDeltaFactor 0.19%

The LP loads are :
263 263 262 262

The communications weight matrix is
0.0 2.0 0.0 5.0 7.0

56.0 0.0 3.0 2.0 61.0
21.0 48.0 0.0 8.0 77.0
50.0 40.0 77.0 0.0 167.0

127.0 90.0 80.0 15.0 => 312.0

The total partition cost is . 3.65

The predicted speedup is . 3.01
Speedup prediction parameters

alpha : 100.0000000000
beta : 1.0000000000
gamma : 0.0900000000

Figure 27. Wallace-Tree SDF Partition Statistics File for 4 LPs
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"• Cam cost Vector - This factor is the Hc discussed in section 3.3.2.1. It

represents lght_InterLPArcs divided by the total number of inter-behavior

arcs in the input problem-graph.

" cam mDst iector - This factor is the i-d discussed in section 3.3.2.2. It

represents the difference between MaxdevWght_Out_Arcs and AvgWght_Arcs

divided by AvgWghtArcs.

"* ia outputLinea - This factor is the Oac discussed in section 3.3.2.4, and

represents the number of arcs in the LP connectivity graph. It is equivalent to the

number of non-zero entries in the communications weight matrix and the number

of output lines specified in the lpx. arcs file.

"• Lookahead_eactor - This factor is the Lars discussed in section 3.3.2.4, and

provides a measure of the amount of lookahead in the lpx. arcs file (the smaller

the value, the larger the average lookahead).

"• AvgComLoad - This factor is the Lavg discussed in section 3.3.1, and

represents the average computation load of all the LPs. Since all behaviors are

equally weighted, this is equivalent to the number of vertices in the problem-graph

divided by the number of LPs.

"* Stddev.ý_Co Load - Represents the standard deviation of the LP

computation loads.

Stmadv._comZoad - Represents the maximum positive deviation of the LP

computation loads.

"• LoadDeltaVactor - This factor is the Hb discussed in section 3.3.1. It

represents Maxdev_CompLoad divided by Avg_Comp_Load.

"• Li Loads - Lists the computation load (i.e. number of behaviors) assigned to

each LP beginning with LPO and proceeding in numeric order from left to right.
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" comunications weight matriz - This is the n x n communications weight

matrix shown in Figure 20 with an additional column to hold the row sums, and

an additional row to hold the column sums. The bottom right entry holds the sum

of all n x n entries and corresponds to the value WghtinterLPArcs.

"* Total Partition Cost - This is the value of the objective cost function of

section 3.3.4.1.

"* Predicted Speedup - This is the value of the estimated speedup equation

of section 3.3.4.2.

"* Speedup Prediction Parameters - Alpha and beta represent the coefficients

used to balance the communications and load imbalance factors of the objective

cost function. Gamma is used as the coefficient to the total partition cost in the

speedup estimate function.

The bottom portion of the partition statistics file lists the behaviors assigned to each LP

and the number of &-cs that are local14 to that LP, and is omitted from Figure 27.

4.2.3 Data Structures. The implementation of the partitioning algorithms is

heavily dependent upon the data structures used to represent the problem-graph for the

circuit being simulated. Several modifications to the underlying data structures used in

the original version of GP-Tool have been implemented in order to improve algorithm

efficiency and to facilitate the implementation of more sophisticated partitioning

algorithms.

In the original GP-Tool, a graph was represented by a set of vertex records and a set

of arc records. In addition, each vertex record contained its own set of arc records for arcs

that originated from that vertex. Each behavior in the circuit being simulated corresponds

14 A local arc is defined as one that is between two behaviors assigned to the same LP.
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-- Declaration of the Vertex Nodes & Instantiation of Generic Set pkg

type VertexNode is
record

TheItem : Item;
The Arcs : ArcSet.Set; -- set of output arcs
ReferenceCount : Natural :- 0; -- number of input arcs
Next : Vertex; -- for garbage collection

end record;
type Vertex is access VertexNode;
package VertexSet is new SetIterator(Item -> Vertex);

-- Declaration of the Arc Nodes & Instantiation of Generic Set pkg

type Arc Node is
record

The Attribute : Attribute;
The Source : Vertex; -- pointer to source vertex
TheDestination : Vertex; -- pointer to destination vertex
Next : Arc;

end record;
type Arc is access ArcNode;
package ArcSet is new SetIterator(Item -> Arc);

-- Declaration of the Graph Type

type Graph is
record

The Vertices : VertexSet.Set;
TheArcs : ArcSet.Set;

end record;

Figure 28. Original GP-Tool Graph Data Structures

to a unique vertex record, and each dependency between behaviors corresponds to a

unique arc record.

The original data structure declarations are shown in Figure 28. With these data

structures, procedures were provided to take a graph as input and iterate through the set of

vertices or the set of arcs which comprised the graph. A procedure was also provided to

take a single vertex as input and iterate through its set of output arcs. As shown in Figure

28, each arc maintained pointers to its source vertex and its destination vertex. Thus, it
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-- Declaration of the Vertex Nodes & Instantiation of Generic Set pkg

type VertexNode is
record

TheItem : Item;
TheArcs : ArcSet.Set; -- set of output arcs
IncomingArcs : ArcSet.Set; -- set of input arcs
ReferenceCount : Natural : 0; -- number of input arcs

Parent : Vertex; -- ptr to prey member of group
Child : Vertex; -- ptr to next member of group
Next : Vertex; -- for garbage collection

end record;
type Vertex is access VertexNode;
package VertexSet is new SetIterator(Item -> Vertex);

-- Declaration of the Arc Nodes & Instantiation of Generic Set pkg

type ArcNode is
record

TheAttribute : Attribute;
The Source : Vertex; -- pointer to source vertex
TheDestination : Vertex; -- pointer to destination vertex
Next : Arc;

end record;
type Arc is access ArcNode;
package Arc_Set is new SetIterator(Item -> Arc);

-- Declaration of the Graph Type

type Graph is
record

TheVertices : VertexSet.Set;
The Arcs : Arc Set.Set;

end record;

Figure 29. Modified GP-Tool Graph Data Structures

was possible to traverse the graph in the forward direction (i.e. following arcs from tail to

head), but not in the reverse direction. This is because the set of input arcs was not

maintained by each vertex record.

To alleviate this problem, the original version of GP-Tool built two separate graphs:

an "adjacency graph" which had the arcs in their forward directions, and a "dependency

graph" which was identical except that the direction of the arcs was reversed. This dual
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type ProcessNodeType is
record

ProcessId : Natural;
LabelName : String8O. StringType;
The-Delay : Natural :- 0;
TheLP : Natural :- 0;

GroupSize : Natural := 1;
GroupNumArcs : Natural := 0;

end record;

Figure 30. ProcessNodeType Data Structure

graph approach was adequate for many applications (such as finding the strong

components), but it had several disadvantages. First, it doubled the amount of memory

required to maintain the graph information. Second, it required twice as long to build the

graph from the input file. Third, and most significantly, there was no way to

simultaneously iterate both the input and output arcs of a given vertex without iterating

through the entire vertex set of the dual graph to locate the matching vertex record. The

ability to perform this last function is critical to being able to efficiently prioritize

behaviors for potential LP reassignment during the border annealing process.

To provide the needed functionality, the vertex record was modified to include a set

of incoming arcs in addition to the set of outgoing arcs. The appropriate procedure to

iterate this new set of incoming arcs was also added. Together, these changes obviated the

need to maintain two separate graphs in memory. The modified data structure

declarations are shown in Figure 29.

In addition to adding a set of incoming arcs to the vertex record, two additional fields

(Parent and Child) were added to allow groups of vertices to be linked together in a

doubly-linked list fashion. These fields are used to link together the behaviors that have

been assigned to the same LP. In doing so, it is possible to quickly iterate through all of

the behaviors that have been assigned to a given LP to gather pertinent information, such

as the number of arcs that are local to that LP, without the need to maintain complex
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external data structures. To facilitate the recording of partition information in the graph

data structure, each vertex keeps track of which LP it is currently assigned to. In addition,

one vertex in each LP is arbitrarily chosen to be the "list head" for that LP, so called

because its Parent field points to a null vertex placing it at the head of the doubly-linked

list which links together the members of the LP. For easy access, the size of the LP and

the number of local arcs for that LP are recorded in the list head (referred to as the "head

vertex" for that LP). To track all of this information, the record data structure shown in

Figure 30, referred to as the ProcessNodeType, is Used as the "Item" type in the

Vertex_Node record of Figure 29.

In addition to providing a place to record LP information, the ProcessNodeType

data structure is where the behavior specific information is recorded. Specifically, the

process id number, the behavior's label name, and the behavior delay are recorded. It

should be noted that to minimize data duplication, only the head vertex for each LP

maintains the information regarding the LP's size and number of local arcs. These fields

are simply ignored if the vertex is not the head vertex.

4.2.4 Menu Structure. The current version of GP-Tool uses a two-level menu

structure. The GP-Tool main menu is shown in Figure 31. Items 1 through 4 allow the

user to produce various output files not directly related to the partitioning files, and are

discussed further in Appendix C.

Item 5 on the main menu takes the user to the behavior mapping sub-menu shown in

Figure 32, from which the user can select the desired partitioning algorithm as well as

modify various user defined partitioning parameters. Items 4-5 allow the user to select an

AB Annealing partition using the depth-first, breadth-first, or random partitioning

algorithms respectively to provide the initial partition. Reference Appendix C for more

detailed information on the available menu options.
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********************** GP-TOOL MAIN MENU *

Select one of the following operations:
1 : Generate Delay and Adjacency Information File
2 Generate SGE Data File
3 Generate Topological Sort File
4 Generate Strong Components File
5 Generate Behavior to Logical Process (LP) Mapping File(s)
0 Quit GP-Tool

Enter your menu choice now:

Figure 31. GP-Tool Main Menu

4.25 Strong Component Search. In directed graph terminology, a strongly

connected component is defined as a maximal set of vertices with the property that there

is a path between any two vertices in the set (10:488). In terms of a problem graph for a

VHDL circuit simulation, a strongly connected component represents a complete

feedback loop, such as the one in Figure 33. Such a feedback loop creates a circular

dependency during simulation. It is common for such feedback loops in digital circuits to

*** * GP-TOOL BEHAVIOR MAPPING MENU *

Select one of the following operations:
1 : Generate Random Partitioning File
2 : Generate Simple Depth-First Partitioning File
3 : Generate Simple Breadth-First Partitioning File
4 : Generate AB1-Annealing Partitioning File
5 : Generate AB2-Annealing Partitioning File
6 : Generate AB3-Annealing Partitioning File
7 : Turn the .MAP and .ARCS output OFF
8 : Modify the Cost Function Parameters
9 : Return to Main Menu
0 : Quit GP-Tool

Enter your menu choice now:

Figure 32. GP-Tool Mapping Sub-Menu
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IN 1:0 -> 1 y O

IN2: 1

Figure 33. Example Feedback Loop - Simple Oscillator

involve a large number of signal state changes. By isolating the feedback loop on a single

LP, it may be possible to reduce the amount of inter-LP message traffic.

For example, consider the simple oscillator circuit in Figure 33. Signal IN2 is tied

high, while signal IN I is initially low and is taken high to begin the output oscillation.

When IN I is taken high, the output signal will change states every 5 ns (the sum of the

delays of the AND and XOR gates). If the AND and XOR gates are assigned to different

LPs, two inter-LP messages (AND to XOR, and XOR to AND) will result for each

change of the output state. If the AND gate is placed on the same LP as the XOR gate,

however, these messages will no longer be necessary (all communications will take place

via the local behavior and active signal lists).

The strong components of the problem graph are found using the following algorithm

(10:489):

" Perform a depth-first search on the input graph with the arcs in the reverse

direction, keeping track of the order in which the vertices are finished. A vertex is

finished when all paths leaving the vertex have been fully explored.

"• Perform a second depth-first search on the input graph with the arcs in the forward

direction. However, begin new depth-first trees by considering the vertices in the

reverse order of their finishing times in the initial search of the previous step.

Keep track of the depth-first trees of this second search.

"* Output the depth-first trees from the second search. Each one of these trees

corresponds to a strongly connected component of the input graph.
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4.2.6 Simple Depth-First (SDF) Partition. The implementation of the Simple

Depth-First (SDF) partitioning algorithm is based upon the depth-first search routine used

in finding the strong components. The algorithm consists of the following steps:

* Calculate the expected size of the current LP by dividing the number of

unassigned vertices by the number of LPs remaining to be filled, rounding up to

the nearest integer. Reset the vertex counter to zero.

* While the vertex counter is less than the expected size of the current LP, traverse

the graph in a depth-first manner with the arcs in the forward direction using a

source vertex15 as the starting point. As previously undiscovered vertices are

visited, assign them to the current LP, mark them as discovered, and increment the

vertex counter. If a newly discovered vertex is part of a strong component, assign

the entire strong component to the current LP and increment the vertex counter by

the size of the strong component. Note that this may put the vertex counter over

the limit set by the size of the LP calculated in the previous step. Finding the

strong components of the graph prior to performing the SDF partition is optional.

In the current version of GP-Tool, the SDF partition by itself does not consider

strong components. However, when the SDF partition is used as the initial

partition for the AB-Annealing algorithm, a strong component search is performed

as the first step in the partitioning process.

* If the current depth-first search tree is completed before the current LP has

reached its target size, begin a new search by choosing another undiscovered

source vertex as the next starting point. If no more source vertices remain, choose

an arbitrary undiscovered vertex as the next starting point.

15 A source vertex is one with no inputs.
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* If the current LP reaches its target size before the current depth-first search tree is

completed, the search is terminated and the process repeats starting again at step

one for the next LP. A new depth-first search tree is started for each successive LP

in an attempt to increase the probability of assigning a complete depth-first search

tree to the LP. This is desirable because each depth-first tree represents a set of

dependent tasks, and assigning dependent tasks to the same LP will reduce the

inter-LP communications overhead.

This algorithm is similar to the Depth-First Breadth-Next (DFBN) algorithm discussed in

section 2.4.8, except that load balancing is considered in the SDF algorithm whereas it is

not addressed in the DFBN algorithm. Some characteristic traits of the partitions

generated by the SDF algorithm are as follows:

"* The first LP will contain long paths of dependent behaviors with a large number

of local arcs.

"• Each successive LP will tend to have shorter paths of dependent behaviors than

the preceding LP as it gets more difficult to find long paths of dependent

behaviors which are not yet assigned to an LP.

"• The final LP will consist of the fragments of the problem graph that were not

assigned to a previous LP, and will tend to have a relatively small number of local

arcs.

4.2.7 Simple Breadth-First (SBF) Partition. The implementation of the Simple-

Breadth First (SBF) partitioning algorithm is identical to that of the SDF algorithm with

the following exceptions:

* The problem graph is traversed in a breadth-first manner.
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When an LP is full, the graph traversal for the subsequent LP assignment picks up

where the previous one had left off. The breadth-first search tree is not terminated

prematurely.

42.8 AB Border Annealing Algorithm. The implementation of the AB Border

Annealing algorithm corresponds to the steps discussed in section 3.4.3. However, before

beginning the first iteration, the graph is evaluated to initialize several data structures

with statistical information concerning the state of the initial partition. The most

significant of these data structures is the initial value of the communications cost sub-

function:
H,, H(1 + He)

where
H,, = L.= 0., = 1.0 = 0.=

because the value of Las is not known until the final state of the partition has been

reached. It is calculated as part of the routine that prints the corresponding ipx. arcs file.

The current algorithm for computing La, is time consuming and including it in each step

of the annealing process would render the algorithm computationally infeasible. The

algorithm for computing Larcs is discussed further in section 5.4.

In addition to ignoring the effect of the lookahead, an additional option has been

added to the annealing input parameters:

I IgnoreWMDist_ractor - boolean value that allows the factor Hd to be

ignored when computing the value of the communications sub-function during the

annealing process.

When IgnoreConuDistFactor is true, the communications cost is calculated as:

HnHo
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During data analysis, it was discovered that in some circumstances, the annealing

algorithm has a tendency to accept a small increase in Ors in order to gain a decrease in

Hid. However, the resulting partition resulted in a decrease in simulation performance over

the initial partition, indicating that the increase in Oarcs dominated the decrease in Hd.

The option Ignore_ConMn_Dist_Factor was included to force the algorithm to accept an

increase in Hd in order to decrease the remaining portion of the cost function (i.e., H.IH).

Once the initial communications costs have been calculated, the annealing process

begins as shown in Figure 34. The annealing queue is filled by the procedure

PrioritizeAndQueue using the criteria discussed in section 3.4.3.1. Once the queue

has been filled, vertices are removed in priority order and considered for LP reassignment

by the procedure ConsiderVertex.

The procedure ConsiderVertex initializes several array data structures with

information concerning the impact on the objective cost function of reassigning the given

vertex to each viable destination LP. Only those LPs which contain behaviors that are

directly connected to the given vertex are considered viable. The specific data structures

maintained are:

"* lnput_ Arc_ax,.ay - Records the number of input arcs to the subject

behavior that originate from behaviors in each of the other LPs.

"• output. Arcsarray - Records the number of output arcs from the subject

behavior that go to behaviors in each of the other LPs.

"* Nght._ArcaArray - Records the net change in the value of

Wght_InterLP Arcs (sum of the inter-component arcs with each arc multiplied

by the corresponding hop weight). Used to calculate the change to He.

"* Madav_Comm _array - Records the net change in the value of

Maxdevl_WghtOut Arcs. Used to calculate the change to Hd.
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Figure 34. AB Border Annealing Algorithm Cycle

•Stddev.Cam Aray - Records the net change in the value of

Stddev_ WghtOut Arcs. Used as a tie breaker, if necessary.

S a~udev., Load Axray - Records the net change in the value of

maxcdevComp_Load. Used to calculate the change to Hb.
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* outputLina Array - Records the new value of LPOutput_Lines (number

of arcs in the LP connectivity graph). Used to calculate the change to Ha.

Each of these data structures is a one-dimensional array indexed by the destination LP

number. If the destination LP is not a viable destination, the corresponding values in the

Wght_ArcsArray, MaxdevCommArray, and StddevCommArray are Set to an

arbitrarily large value (e.g. 2 times the number of arcs) to effectively eliminate these LPs

from move consideration.

The first two data structures, InputArcsArray and OutputArcsArray, are

initialized once at the beginning of the procedure considerVertex. In a worst case

scenario, a given behavior has input arcs from all other LPs and output arcs to all other

LPs. In this situation, it would take O(N) operations to initialize these data structures

(where N is the number of behaviors in the graph). However, on average, each behavior

will have only E/N input arcs and E/N output arcs (where E is the number of arcs in the

graph). For a given circuit, E and N are fixed and have a relatively small ratio. Thus, on

average, it takes only 0(2E/N) = 0(1) operations to initialize these data structures.

For viable destination LPs, however, the net change to the communications cost

factors must be calculated. Although the communications costs between LPs are recorded

in an P2 data structure (the CommWeight_Matrix), where P is the number of LPs, only

those rows and columns associated with the source and destination LP will be affected by

the move. Thus, the net change to the communications cost factors for a particular

destination LP are calculated in O(P) time. Since there are (P-l) potential viable

destination LPs, the upper limit of the running time order of the Consider-Vertex

procedure is O(P(P- 1)) = O(P2 ) (assuming 0(1) average time to calculate the input/output

dependencies of a viable destination LP as discussed in the previous paragraph).

However, as P is increased, it is reasonable to expect that only a small fraction of the LPs
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will be viable destinations for the average vertex, making the average running tirm for

ConsiderVertex approximately O(P).

The data structures initialized by the procedure ConsiderVertex are passed to the

procedure SelectBest_move which evaluates the viable moves to find the one which

will result in the smallest value of the communications cost sub-function:

Hn He(1 + Hd)
or

if IgnoreCommDistFactor is set to true. If the destination LP with the smallest

communications cost sub-function value will result in a change to Hb that will put it over

the maximum value (LoadImbalTol), the selected move is discarded and the next best

move is sought. In no case will an increase in the communications cost sub-function be

allowed. Thus, it is possible that no move will be selected. The procedure's running time

is O(P) since each LP must be considered.

If a move is selected, it is carried out by the procedure Move-Vertex. The move

involves an update to the partition statistics values to record the new cost factors, as well

as a series of simple list inserts and deletes to assign the vertex to the new LP. The

procedure move_Vertex has a running time of O(P) since the communications weight

matrix must be updated to contain the new values for the rows and columns associated

with the source and destination vertex.

If the annealing queue is not empty, the next vertex is removed and the consideration

process is repeated. If the annealing queue is empty, the current iteration is completed. If

the maximum number of iterations has not been reached, the value of the communications

cost sub-function is compared to the value computed at the end of the previous iteration

(or at the beginning of the algorithm for the first iteration). If there was no net

improvement, the iteration is considered "worthless." If there have been
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MaxWorthlessIter consecutive iterations that were worthless, the annealing process is

terminated.

With the streamlined implementations of the procedures ConsiderVertex and

Move-Vertex, the most time consuming portion of the annealing cycle appears to be the

procedure PrioritizeAnd_Queue. This appears to be due to the linear data structures

used to provide priority queue management. A splay tree queue implementation may

provide a higher level of efficiency.

4.3 Test Cases

43.1 Wallace-Tree Multiplier. Prior to this thesis effort, the wallace tree

multiplier was the largest VHDL circuit simulated in parallel at AFIT with the VSIM

simulator. The multiplier takes two eight bit vectors as input and produces a single twelve

bit product vector as output (4:131). The resulting problem graph consists of 1,050

behaviors and 1,770 inter-behavior arcs. The simulation runs from 0 to 2000 ns.

4.3.2 Associative Memory Array. The associative memory array circuit consists

of a 16 x 16 memory array, associated control registers, and 68 vector testbench. The

associative memory is currently the largest circuit simulated with VSIM. The resulting

problem graph consists of 4,243 behaviors and 9,312 inter-behavior arcs. The testbench

consists of the following actions:

1. Write to all memory words in order from word 0 to word 15 (16 writes).

2. Read all memory words in order from word 0 to word 15 (16 reads).

3. Search for certain pre-specified patterns (16 searches).

4. Read from all memory words in an arbitrary order (16 reads).

5. Perform read operations with multiple words selected (4 reads).
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Figure 35. Associative Memory Array

The circuit is built in a hierarchical manner to allow for easy transformation and

compilation with VSIM. When written to run with the Synopsis commercial VHDL

simulator, the simulation ran from 0 to 8000 ns. However, VSIM has a limit of

approximately 2000 ns because of the data type used to represent the simulation clock. To

get around this problem, all time units in the associative memory VHDL source code

were changed to picoseconds. Thus, the simulation runs from 0 to 8000 ps (8 ns).

A block diagram for the associative memory circuit is shown in Figure 35. It should

be noted that all three input registers and all three output registers are clocked by the

same enable signal as a matter of design convenience. A result of this is that during
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memory writes, the value of the tag output register oscillates rapidly. This has the effect

of adding a large number of events to the simulation, slowing down the simulation.

Observation of the simulation shows that the simulation progresses slowly until the writes

are completed (at time 2000 ps), at which time it begins to progress at a much faster pace.

The correctness of the output remains unaffected since the content of the tag register is

not relevant during a memory write.
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V. Methodology and Results

5.1 Overview

This chapter presents a discussion of the performance of the VSIM test cases

discussed in the previous chapter. Four different partitionings created with the GP-Tool

utility are used. Specifically, each circuit was simulated with a random partition, a simple

depth-first (SDF) partition, and a simple breadth-first (SBF) partition. The best of these

three partitions was then used as the initial partition for the AB border-annealing

algorithm to create a fourth partition.

The primary performance measurements were taken on the 8-node iPSC/2. All

speedup calculations use a single-LP partition as the performance baseline. Each circuit

was simulated with 2, 3, 4, 5, 6, 7, and 8 LPs for each of the four partition types. For the

wallace tree, the performance measurements and message counts for each configuration

are calculated from the average of 20 simulation trials. For the associative memory array,

only 10 simulation trials were run for each configuration due to the large amount of time

required for each trial.

The results of each circuit are discussed in terms of the resulting speedup, the inter-LP

message traffic, and the corresponding partition statistics. The inter-LP message traffic is

analyzed in terms of message traffic originating from each LP. Tables containing the

simulation trial results and partition statistics for each combination involving 1, 2, 4, or 8

LPs are included in Appendix D along with supplemental inter-LP message traffic charts.

In addition to the iPSC/2 results, the wallace tree multiplier was run on an iPSC/860

hypercube using up to 32 nodes. These results are presented briefly in section 5.6.
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Figure 36. Wallace Tree Speedup Results Comparison

5.2 Speedup Results

5.2.1 Wallace-Tree Multiplier. The wallace tree speedup results are shown in

Figure 36. All speedup calculations are in reference to the single LP case which required

an average of 67,947 ms to complete. Figure 37 compares the number of LP output lines,

the number of inter-LP arcs, and the communications distribution factor for each of the

partitioning algorithms, while Figure 38 shows the corresponding message counts. The

message counts are shown in terms of real, null, and total messages sent from all LPs.

As shown in Figure 36, the random partitioning speedup peaks at 2.72 with 3 LPs and

declines to 1.23 with 8 LPs. Observation of Figures 37 and 38 shows that the reason for
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Figure 38. Wallace Tree Inter-LP Message Traffic Comparison
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this sharp drop-off in speedup is due to a dramatic increase in the inter-process

communications overhead as the number of LPs is increased. Specifically, Figure 37

shows that for 8 LPs, the random partition has the maximum of 56 LP output lines and a

total of 1,558 of 1,770 arcs (88%) that cross the LP boundaries. Comparing these curves

to Figure 38 shows the direct relationships between the number of LP output lines and the

number of null messages transmitted, and between the number of inter-LP arcs and the

number of real messages transmitted.

Note that the random partitioning real message curve (Figure 38) decreases in slope as

the number of LPs is increased. This occurs as the number of random partition inter-LP

arcs quickly approaches its theoretical maximum (e.g. 49% with 2 LPs and 75% with 4

LPs). This correlates directly to the number of real messages approaching its maximum

limit at approximately the same rate. The maximum number of real messages is

determined by the number of actual signal changes in the simulation. If 100% of the arcs

cross LP boundaries, then every signal change in the simulation will result in the

transmission of a real message.

On the other hand, the slope of the null message curve for random partitioning shows

a trend of increasing as the number of LPs is increased. This follows from the direct

relationship between the number of null messages and the number of LP output lines

along with the fact that the random partitioning algorithm has a tendency to produce the

maximum of P(P-1) LP output lines. The theoretical limit on the number of LP output

lines is the same as the number of inter-LP arcs. However, the limiting factor of P(P-1)

means that a larger number of LPs will be required for the actual number of LP output

lines to approach its maximum. Furthermore, while the number of inter-LP arcs and LP

output lines share a common theoretical maximum, the maximum number of null

messages may be much higher than the maximum number of real messages. This is due to

several factors. First, each real message transmitted may result in the transmission of
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multiple null messages. Second, null messages are transmitted over all output lines each

time an LP must block for input. Finally, the number of null messages is partially

dependent upon the amount of lookahead in the corresponding lpx. arcs file.

An important result of this is that as the number of LPs is increased, the null message

communications overhead required to avoid deadlock begins to dominate the overhead

from the real message traffic. For example, the approximate null to real message ratios

for random partitioning with 2, 4, and 8 LPs are 1:4, 1:1, and 4:1 respectively.

The SDF partitioning speedup curve is slightly better, peaking at 3.04 with 5 LPs and

decreasing to 1.50 with 8 LPs. Looking at Figure 37, the most notable improvement

between the random and SDF partitions is in the number of inter-LP arcs. With the

deliberate depth-first partitioning algorithm, the number of inter-LP arcs approaches its

maximum at a much slower rate, reaching only 30% with 8 LPs (vs. 88% for the random

partition). Figure 38 shows how this improvement translates directly into a similar

improvement in the number of real messages transmitted. For example, with 8 LPs, there

is a 73% reduction in the number of real messages. In addition, the SDF partitioning

algorithm reduced the number of LP output lines to only 45 with 8 LPs (vs. 56 for the

random partition). Again, Figure 38 shows how this improvement translates directly into

a similar improvement in the number of null messages transmitted (e.g., 27% reduction in

the number of null messages with 8 LPs). It should be noted that an increase in the

amount of lookahead in the 3I x. arcs files and the decrease in the number of real

messages also contributed to the decrease in the number of null messages. The increased

lookahead is due to th,. •bility of the SDF algorithm to assign relatively long chains of

dependent behaviors to the same LP. In many cases, this will increase the minimum path

time through the LP.

Even with this reduction in the number of null messages, however, the shape of the

null message curve is still prcportionai to P(P- 1). As a result, the null message overhead

97



still dominates the real message overhead as the number of LPs increases. In fact, due to

the reduction in the number of real messages, fewer LPs are required until null messages

begin to dominate real messages. For example, the null to real message ratio for the SDF

partition begins at 2:1 with 2 LPs, and increases to 11:1 for 8 LPs. This domination of the

null messages offsets the apparent benefits gained by the decrease in the real message

traffic. For example, with 8 LPs, there was a 73% reduction in real messages, but only a

36% reduction in total messages. The continued high communications cost is the primary

reason that the speedup curve for the SDF partition drops off rapidly with more than 5

LPs.

An additional factor which appears to limit the speedup gains of the SDF partition is

the relatively high value of Hd as shown at the bottom of Figure 37. The inter-LP arcs of

the random partition are relatively evenly distributed among each of the LPs. However,

the SDF algorithm tends to result in partitions in which a relatively large portion of the

inter-LP arcs will originate from a single LP. The relationship between Hd, the inter-LP

message traffic, and the resulting speedup is discussed further in section 5.4.

The SBF partition speedup curve is even better than the SDF curve, peaking at 3.43

and declining at a much slower rate to 2.86 with 8 LPs. While Figure 37 shows that both

algorithms result in partitions with approximately the same number of inter-LP arcs, the

SBF algorithm is able to take advantage of the feed-forward nature of the wallace-tree

circuit and produce a circuit with a significantly smaller number of LP output lines (e.g.,

29 with 8 LPs vs. 45 for the SDF partition). As shown in Figure 38, this corresponds to a

slower growth rate in the null message curve. Still, with the corresponding reduction in

real message traffic, the communications overhead is dominated by the null message

traffic with a null to real message ratio of 2:1 with 2 LPs and growing to 6:1 with 8 LPs.
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Since the SBF partition provided the best speedup results, it was used as the initial

partition to the AB annealing algorithm to get the fourth speedup curve shown in Figure

36. The following input parameters were used to the annealing algorithm:

NumIterations - 500 IgnoreCommDistFactor - true
MaxWorthless_ Iter - 25 Topological - false
Load ImbalTol - 1.5% HopWeights - all 1.0

With IgnoreCommDistFactor set to false, the algorithm reduced Hd and HC at the

expense of a slight increase in Hn. The result was a reduced and more evenly distributed

real message communications load that was overwhelmed by an increased null message

communications load resulting in no net improvement in the speedup curve. By setting

Ignore_ Comm_DistFactor tO true, the algorithm has a tendency to reduce Hn and Hc

at the expense of a potential increase in Hid. This effect can be seen by comparing the SBF

and AB Annealing curves in Figure 37.

Figures 37 and 38 show that the AB Annealing partition caused a reduction in the

number of inter-LP arcs with a corresponding reduction in the amount of real message

traffic for all LP values. For example, with 8 LPs, the number of real messages

transmitted has been reduced by 85% over the random partition. However, the

corresponding speedup results were mixed, with no noticeable improvement over the SBF

partition for 2, 3, 4, 5, and 7 LPs. The speedup curve shows a modest improvement with 6

LPs, and a more significant improvement with 8 LPs where it peaks at 3.89. The large

improvement with 8 LPs is due to a decrease in null message traffic caused by a reduction

in LP output lines from 29 to 26, along with an increase in the average lookahead.

There are a number of interesting observations that can be made about the AB

annealing speedup curve. First, the only factor that appears to be limiting the performance

improvement for a majority of the data points is an increase in the value of Hd. This lends

credibility to the assertion that the distribution of the inter-process communications is a

significant contributing factor to simulation performance. On the other hand, the largest
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increase in Hd occurs with 8 LPs which corsponds to the data point with the greatest

improvement in simulation speedup. In this instance, the increase in Hd appears to be

dominated by the reduction in Hn and He. This phenomenon is likely due to a failure of

the cost factor Hld to accurately capture the relationship between the distribution of the

inter-process communications and the resulting simulation performance.

522 Associative Memory Array. The associative memory speedup results are

shown in Figure 39. All speedup calculations are in reference to the single LP case which

required an average of 4,380,074 ms to complete. Figures 40 and 41 compare the

partitions statistics and resulting message traffic respectively.

As shown in Figure 39, the random partitioning speedup peaks at 3.95 with 5 LPs,

and declines to 3.03 with 8 LPs. Due to the large number of total simulation events in the

associative memory circuit, the communications overhead for random partitioning is

dominated by real message traffic for the number of LPs used in this thesis. For example,

the null to real message ratio begins at 1:25 with 2 LPs, and increases to 1:2 with 8 LPs.

Further increases in the number of LPs will swing the ratio the other way, and the

communications overhead will be dominated by the null message overhead. This can be

seen by observing the slopes of the real and null message curves in Figure 41.

The SDF partitioning speedup curve shows consistently better results than the random

partition, peaking at 4.49 with 5 LPs, and decreasing to 3.53 with 8 LPs. Looking at

Figure 40, it can be seen that SDF partitioning provides a noticeable improvement over

random partitioning in terms of both the number of inter-LP arcs and the number of LP

output lines. For example, with 8 LPs, the number of inter-LP arcs has been reduced by

61% (from 8129 to 3145), while the number of LP output lines has been reduced by 21%

(from 56 to 44). However, over 50% of the remaining inter-LP arcs originate from a

single LP, resulting in a value of Hd of 333.2%.
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Figure 39. Associative Memory Speedup Results Comparison

Looking at Figure 41, the effect on the real message curve was even more dramatic

than the speedup curve, with the number of real messages and null messages being

reduced by 90% and 41% respectively in the 8 LP case. However, due to the decrease in

real message traffic caused by the improved partition, the null messages begin to

dominate the communications overhead at a much earlier point. The null to real message

ratio with 8 LPs is 3:1 (vs. 1:2 for the random partition). Nevertheless, the total

communications overhead was reduced by over 72% with 8 LPs. Although this

improvement was significant, the corresponding speedup was improved by less than 17%.
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The SBF partitioning algorithm performed very poorly on the associative memory

circuit, giving speedup that was worse than random partitioning. The exact reason for the

poor performance of the SBF partitions is not clear, as there were improvements in both

the number of inter-LP arcs and LP output lines. However, the value of Hd was

consistently higher, although it was less than that of the SDF partitions. It appears that the

decrease in message overhead was not large enough to overcome the increase in Hd.

It is interesting to note in Figure 40 that the SBF and SDF partitions result in

approximately the same number of LP output lines. However, Figure 41 clearly shows

that the SBF partitions resulted in a noticeably higher amount of null message traffic.

There are two reasons for this effect. First, the SDF partitions resulted in larger average

lookahead values. This was expected since the SDF algorithm has a better chance of

grouping long sequences of dependent behaviors due to the order in which the graph is

traversed during partitioning. Second, when an LP sends a real message over one output

line, it sends null messages over all other output lines with the same timestamp.

Therefore, the large number of real messages in the SBF partitions causes an increase in

the null message overhead.

For the associative memory circuit, the SDF partition was used as the initial partition

to the AB annealing algorithm to get the fourth speedup curve shown in Figure 39. The

following input parameters were used to the annealing algorithm:

NumIterations - 500 IgnoreComm _DistFactor - false
Max_WorthlessIter - 50 Topological - false
Load_ImbalTol - 0.5% Hop__Weights - all 1.0

Looking at Figure 40, it is clear that the border annealing algorithm improved the

quality of the partition in terms of each of the three communications cost factors: LP

output lines, inter-LP arcs, and communications distribution factor. However, the

corresponding speedup results were decidedly mixed, with the new partitions performing

the same as the SDF partitions with 5 and 7 LPs. However, the the highest speedup
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obtained for the associative memory, 4.89, was achieved with the 6 LP AB annealing

partition. Although the exact reason for the lack of improvement in the 5 and 7 LP cases

is not clear, there appears to be several contributing factors.

As an example, comparison of Figures 40 and 41 shows that although the number of

inter-LP arcs is reduced with the AB annealing algorithm, the number of real messages

transmitted is slightly higher. This is possible because, as discussed in section 3.3.2.1, the

actual real message communications load over each arc is dependent upon the signal

activity of the circuit. Since this information is not available prior to simulation, each arc

is assumed to have an equal cost in terms of message load.

Although real message traffic was increased slightly, the null message traffic was

lowered. As expected, this was due to a consistent reduction in the number of LP output

lines caused by the AB border annealing algorithm. However, the reduction in null

messages is not as large as might be expected from the reduction in LP output lines. As

with the SBF partitions, this is due to the slight increase in real message traffic. The net

result is a modest decrease in total message traffic over the SDF partitions, with a

maximum decrease of 8.67% on 7 LPs.

As stated previously, the AB annealing speedup results were mixed. The biggest

increase over the SDF partitions, 15%, occurred with 6 LPs. It is interesting to note that

this corresponds with the biggest drop in the communications distribution factor Hld (see

Figure 40). While this is consistent with the expected results from the objective cost

function, it is also interesting to note that the smallest speedup gains correspond to the

test cases with the largest decrease in total message traffic (5 & 7 LPs). These

inconsistent results provide a strong indication that other factors are influencing the

simulation performance.

As mentioned previously, one potential source of these inconsistencies is a failure by

the partition cost function to capture the true relationship between the distribution of the
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communications and the simulation performance. Another possible source of the

inconsistency is the artificial feedback imposed upon the simulation when the betiavior

graph is mapped onto the processor graph. Although this feedback is not addressed

directly in this thesis, partitioning the circuit to reduce the number of LP output lines and

inter-LP arcs also reduces the amount of imposed feedback. Intuitively, however, the true

effect of these imposed feedback loops depends upon the behaviors involved and the

signal activity of the circuit. Further research is needed in order to account for this

overhead in the partition cost model.

5.3 Speedup Prediction

As discussed in section 3.3.4.2, one of the objectives of this thesis was to quantify the

relationship between the quality of a partition and the resulting speedup. Although the

ability to predict the speedup from the partition information may be useful, the primary

purpose of this objective is to validate the partition cost function developed in this thesis.

The coefficient value 1 was arbitrarily set to 1.0, and the coefficient value a was selected

to provide the desired relative weightings to the load imbalance and communications

portions of the objective cost function. The first step in selecting a was to examine the

expected magnitudes of the communications cost sub-function (Hn Hc (1 + Hd)) and the

load imbalance sub-function (Hb) for a typical example (e.g., the wallace tree multiplier).

Because of the chosen methodology selected for representing the communications cost

factors, the communications cost sub-function is likely to produce a much larger value

than the load imbalance sub-function. Therefore, it was desired to make a larger than B in

order to account for this difference in representation. An a value of 100.0 was chosen.

This selection was validated by comparing the resulting expected speedup values against

the actual speedup curves using an arbitrary value for Y. It should be noted that the

relatively small load imbalances used in this thesis (1.5% max) would tend to obscure any
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Figure 42. Wallace Tree Speedup Prediction Curves

errors with this relative weighting by causing the cost function to always be dominated by

the communications cost sub-function. Further research is required in order to find the

correct relative weightings. This research should include a re-examination of the "best"

way to represent the communications cost factors 16.

The last remaining coefficient, y, was determined to be circuit dependent.

Specifically, it appears to be inversely proportional to the total number of events in the

simulation. The value for y was selected separately for each circuit by using trial-and-

error to find the value which gave the best match between the predicted vs. actual

speedup curves for random partitioning. Once selected, the same value was used for each

of the other partitioning algorithms. All three coefficient values are given to GP-Tool,

which calculates the predicted speedup as part of the partition statistics output file.

In general, the speedup prediction results were correct (but not exact) for a clear

majority of the partition - LP combinations. Intuitively, this seems to indicate that the

objective cost function proposed in this thesis is able to successfully model the

16 For example, under the current implementation, Hc and Hd are calculated as percentages, but Hn is not.
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dominating partition cost factors in most circumstances. Further research would allow

this cost model to be refined to provide even better results.

53.1 Wallace-Tree Muldplier. The predicted speedup curves for the wallace tree

multiplier are shown in Figure 42. For this circuit, a y value of 0.09 was used. Although

the predicted speedup values were not exact, comparison with Figure 36 shows that the

partition cost model successfully predicted the correct ordering of the four partition types.

For example, it correctly predicted that the SBF partitions would perform better than the

SDF partitions which would, in turn, perform better than the random partitions. Except

for the 7 LP case, it also correctly predicted that the AB annealing partitions would

outperform the SBF partitions.

5.32 Associative Memory Array. The predicted speedup curves for the

associative memory array are shown in Fi',ure 43. For this circuit, a y value of 0.025 was

used. Again, the predicted speedup values were not exact, but comparison with Figure 39

shows that the partition cost model successfully predicted the correct ordering of the four

partition types. For example, it successfully predicted that the SBF partition would

consistently perform worse than the random partition, and that the SDF partition would

consistently perform better than the random partition. However, it failed to predict the

anomalous 5 and 7 LP cases where the AB annealing partitions performed no better than

the SDF partitions. This further supports the assertion that under some circumstances,

there are factors which contribute to the simulation performance other than those that are

captured by the objective cost function model.
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Figure 43. Associative Memory Speedup Prediction Curves

5.4 Message Traffic Analysis

This section looks more closely at the inter-LP message traffic overhead for a few

representative test cases. Three types of graphs are presented: real messages transmitted

from each LP vs. null messages transmitted from each LP; total messages transmitted

from each LP vs. total inter-LP arcs originating from each LP; and total messages

transmitted from each LP vs. total LP output lines originating from each LP. In each

graph, all four partition types are compared. Similar graphs for additional test cases are

included in Appendix D.

5.4.1 Wallace-Tree Multiplier. Figure 44 shows the real vs. null message graph for

the 4 LP case, while Figure 45 shows the same graph for the 8 LP case. Clearly, for the 4

LP random partition, the communications overhead is nearly evenly divided between real

messages and null messages. In addition, the communications are evenly distributed, with

each LP generating a relatively equal number of messages. Although the total number of

null messages is reduced for ea-h successive partition (SDF, SBF, and AB annealing
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respectively), the total number of real messages is also reduced. The resulting effect is

that the inter-LP communications for each LP are dominated by the null message

overhead. Figure 45 shows an identical set of relationships for the 8 LP case, except that

the null messages dominate the communications overhead for the random partition as

well. Intuitively, further reductions in real messages without significant reductions in null

messages will have limited impact on the total communications overhead.

An additional observation from Figures 44 and 45 is that for the deliberate

partitioning strategies of SDF, SBF, and AB annealing, the remaining message traffic is

no longer evenly distributed among all of the LPs. Observation of this phenomenon lead

to the addition of the communications distribution factor (Hid) to the objective cost

function as discussed in section 3.3.2.2. Figure 46 attempts to validate the

communications distribution factor by showing the relationship between the total number

of messages transmitted from each LP and the total number of inter-LP arcs originating

from each LP.

In general, the results are decidedly mixed. There appears to be a detectable

relationship between output arcs and messages transmitted for the random and SBF

partitions, but not the SDF or AB annealing partitions. Additional examples with

similarly mixed results are included in Appendix D. Collectively, this data supports the

assertion that the distribution of the communications load may be a factor in the

simulation performance, but the cost function proposed in this thesis fails to accurately

model the communications bottleneck in some instances.
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One attempt at improving the method of modeling the distribution of the inter-LP

communications involved the relationship between the total messages transmitted from

each LP and the corresponding number of output lines for that LP. This relationship was

investigated because of the fact that for relatively large LP values, the null messages

dominate the total message counts, and the number of LP output lines are the major

contributor to the number of null messages. Figure 47 shows this relationship for the

wallace tree 8 LP case. Clearly, there is a detectable relationship for the majority of the

partition types. A single exception is LP7 for the AB annealing partition. This apparent

anomaly is explainable, however, by the fact that LP7 has no input arcs. With no input

arcs, it never has to block for input. Because it never blocks, it never sends blocking

nulls. Additional examples with similar results are included in Appendix D.

However, despite these positive results, revising the communications distribution

factor Hid to be based upon the number of LP output lines rather than the number of

output arcs resulted in a degradation of the speedup prediction curve results.

Nevertheless, these results indicate that this relationship deserves further investigation.
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5.4.2 Associative Memory Array. A similar set of graphs is presented for the

associative memory array in Figures 48 through 51. Specifically, Figure 48 shows the real

vs. null message graph for the 8 LP case. Notice that for the 8 LP random partition, real

messages continue to dominate the total inter-LP message overhead. However, as

mentioned in section 5.2.2, this situation will reverse itself as the number of LPs is

increased further. Another interesting item from this figure is the results of the SBF

partition. Notice that for a few LPs, the communications overhead continues to be

dominated by real messages. Furthermore, the number of real messages transmitted by

LP5 and LP7 each exceed the average number of real messages transmitted by all LPs in

the random partition by as much as 109%. This communications bottleneck is the most

likely culprit in the poor performance of the SBF partitions for the associative memory

array.

As stated previously, the o LF AB annealing partition provided the maximum speedup

for the associative memory circuit. Figures 49 through 51 show the 6 LP case of the real

vs. null messages graph, the total messages vs. output arcs graph, and the total messages

vs. LP output lines graph respectively. The results are similar to those for the wallace

tree. An exception is the total messages transmitted vs. the LP output lines for the SBF

partition in Figure 51. In this particular instance, there is no discernible relationship

between the total number of messages transmitted by each LP and the number of output

lines originating from each LP. Additional examples with similar results are included in

Appendix D.
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Table 2. Predicted vs. Actual Effect of Increased Lookahead

Number of LPs Expected Nulls Actual Nulls % Difference

2 1,964 1,985 -1.06%
3 4,796 5,733 a 16.34%
4 9,809 10,180 -3.64%
5 14,499 15,102 -3.99%

616,980 19,949 -14.88%
7 26,200 27,1I198 -3.39%
8 28,550 30,854-' -7.47%ý

5.4.3 Increasing Lookahead. Sections 3.3.2.3 and 3.3.2.4 discuss the

relationship between the average lookahead in the ipx. arcs file, the null message

overhead, and overall simulation performance. This section uses the wallace tree SBF

partitions to present a quantitative example to illustrate these relationships. To make the

comparison, the SBF lpx. arcs files were modified to contain the wallace tree normal

lookahead value of 2 ns for all LP output lines. The simulations were then re-run for

comparison with the original SBF results with the increased lookahead.

In section 3.3.2.4, an assumption is made that the logical delay value for an LP output

line will only be used to determine the timestamp of a null message approximately 50%

of the time. This assumption is then used as the basis for a modified calculation of I-Ms,

which estimates the impact of the average lookahead value on the null message overhead.

Table 2 presents data for the wallace tree SBF partitions to demonstrate the validity of

this assumption. Specifically, it uses the modified equation for Larcs to calculate the

expected number of null messages and compares it against the actual number of null

messages. The value for expected null messages is calculated by multiplying the value of

Larcs by the number of null messages transmitted when all logical delays in the lpx. arcs

file were set to their normal value (2 ns). As seen from the table, the actual number of

null messages was within 10% of the expected value in a majority of the cases, and was

within 20% in all cases.
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Figure 52 shows the comparison between the SBF partitions with the naturally

increased lookahead and the SBF partitions in which all lookahead values have been set

to the normal value of 2 ns. Specifically, it shows the comparison in speedup, average

lookahead, and null message traffic. As can be seen from the figure, the increase in

lookahead had a consistent effect of decreasing the null message overhead and increasing

the speedup. However, the net effect on speedup was essentially negligible, and the

number of null messages is still proportional to the number of LP output lines. Therefore,

while increasing the average lookahead values will help to optimize the simulation

performance, it does not appear to be a potential source of significant speedup gains.

5.4.3.1 Calculating Lookahead. While increasing the average lookahead

reduces the null message overhead, calculating the correct lookahead values is a potential

computational bottleneck. The maximum lookahead value for an LP output line is defined

as the minimum path from all inter-behavior arcs entering the LP (and all source

behaviors in the LP) to all inter-behavior arcs exiting the LP that correspond to the given

LP output line. The minimum path is defined as the sum of the logical delays of the

behaviors on the path.

The current algorithm used by GP-Tool is a recursive algorithm that begins at each

input arc to the current LP (LPa) and traverses all possible paths through the LP until it

reaches an external LP, tracking the length of the current path (in terms of logical

behavior delays) along the way. When the current path reaches an external LP (LPb), the

minimum path on record from LPa to LPb is compared to the length of the current path

and updated if necessary. The process is repeated for each input arc and each source

behavior for each LP. This algorithm has proven to be the most efficient method of

calculating the lookahead values in most situations. Two exceptions are discussed in the

next section.
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Figure 52. Effect of Increased Lookahead on Wallace Tree SBF Partitions
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5.4 32 Lookahead Anomalies. This first anomaly related to the calculation of

the average lookahead values for the lpx. arcs files deals with the running time of the

recursive .arcs routine discussed in the previous section. Under certain circumstances, this

algorithm can be extremely inefficient. Specifically, calculating the lookahead values for

the wallace tree circuit with 2-4 LPs can take 30 minutes or more. This occurs because

the SDF partitioning algorithm results in partitions in which the first LP contains

relatively long paths of dependent behaviors. This, in turn, increases the number of paths

through the LP as well as increasing the level of recursion required by the algorithm.

Comparison with other algorithms, however, indicates that the increased computation

time is out of proportion to the longer paths caused by the SDF partition. For example,

Dijkstra's shortest path algorithm, which finds the shortest path from a given behavior to

all other behaviors, runs much faster than the anomolous recursive case. The problem was

not experienced on the associative memory circuit, which is more than 4 times larger than

the wallace tree multiplier. Furthermore, as the number of LPs was increased, the

computation bottleneck for the wallace tree SDF partitions decreased.

An alternative method for calculating the correct lookahead values based upon

Dijkstra's shortest path algorithm was implemented as well (although it is not in the

current version of GP-Tool). For each input arc and source behavior in LPa, this approach

uses Dijkstra's algorithm to calculate the shortest path to all other behaviors in the

system. Not all of these paths are relevant to the lookahead value. For example, the path

from behavior i in LPa to behavior j in LPc is of no interest if there is no direct connection

from LPa to LPc. Therefore, this algorithm involves significant extraneous computations.

Although this algorithm is independent of the number of LPs or the quality of the

partition, an additional disadvantage is that the algorithm is proportional to N(N-1),

where N is the number of behaviors in the system. In general, this algorithm was less
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efficient than the recursive algorithm, except for those few cases in which the recursive

algorithm experienced the anomalous computational bottlenecks.

The second anomaly related to the calculation of the lookahead values for the

lpx. arcs files involved the associative memory 8 LP SBF partition. Specifically, the

recursive algorithm produced lookahead values which caused message out-of-order errors

during simulation. This occured when the lookahead values in the ipx. arcs file were too

large, causing the transmission of null messages with timestamps that were too large.

Theoretically, calculating the lookahead values as described in the previous section

should prevent this from occurring. Analysis has failed to find any errors in the algorithm,

and the problem was not observed on any other circuit/partition/LP-value combination. It

was manually resolved by reducing the lookahead values in the ipx. arcs file in small

increments until the out-of-order errors disappeared.

5-5 AB Border Annealing Algorithm

One of the primary objectives of this thesis research was to make the partitioning

strategy implemented efficient in terms of required computation time. As discussed in

chapter 4, the annealing algorithm continues until a maximum number of iterations have

been executed, or until a specified number of consecutive iterations have been executed

with no net improvement in the cost function. Under the current implementation of GP-

Tool, there is no option for setting the tolerance for measuring changes in the cost

function. Rather, changes are measured to the precision provided by the standard floating

point data type used in the Ada compiler. As a result, the annealing process will continue

as long as minor improvements are being made.

For example, Figure 53 shows the partition statistics for the 8 LP wallace tree AB2

annealing partition as they vary over the iterations of the AB border annealing algorithm.

Recall that in this partition, the option IgnoreComm Dist Factor Was set to true. Thus,
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lid is allowed to increase in an effort to maximize the reductions in Hc and Hl. Although

the algorithm executes 168 iterations before terminating, it is clear that minimal

improvement was made after the first 35 iterations. This type of behavior, in which the

majority of the improvement was made in the first few iterations, is typical for the test

cases performed to date.

The AB border annealing algorithm has not been instrumented to allow for detailed

timing measurements. However, the entire AB annealing process for this test case took

approximately 59 sec to complete, for an average of 0.35 sec per iteration. It should be

noted that not all iterations will require the same amount of computational time. For

example, as the state of the partition is improved through successive iterations, fewer

behaviors will be queued for reassignment consideration. Thus, as the algorithm

progresses, the time per iteration will show a decreasing trend.

As a point of comparison, rough measurements were taken on the time required to

produce a random partitionl 7 and an SDF partition for both the wallace tree and the

associative memory with 8 LPs. For the wallace tree, the random partition took

approximately 7 secs, while the SDF partition took less than I sec. For the associative

memory, the random partition took approximately 71 secs, while the SDF partition took

less than 3 secs.

5.6 Increasing the Number of Processors

The results presented above were limited to an 8-node iPSC/2 hypercube. In order to

validate the resuits on a larger number of processors, the wallace tree circuit was run on

an iPSC/860 using up to 32 nodes. The simulation speedup results, partition statistics, and

inter-LP message counts are presented in Figures 54 to 56 respectively.

17 Note that the random partitioning algorithm was not written for maximum efficiency.
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Figure 54. iPSC/860 Wallace Tree Speedup Results Comparison

As can be seen from Figure 54, the increased processing power of the i860 processors

provides an order of magnitude speedup over the iPSC(2 for the single LP case. Because

single LP case runs so much faster on the i860, it is much more difficult to obtain

speedup with multiple processors. For example, the speedup for the random partition was

less than 1.0 for all LP numbers greater than 1, and the maximum speedup obtained was

1.9 on 4 LPs for the AB annealing partition. Despite these differences, the patterns

relating the partition statistics to the inter-LP message traffic and speedup are identical to

those for the iPSC/2 results.
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Figure 55. iPSC/860 Wallace Tree Partition Statistics Comparison
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VI. Concltsions and Recommendations

6.1 Research Swnmary

As modem integrated circuit designs grow larger and more complex, the time

required to perform sequential VHDL simulations becomes more burdensome. In order to

execute complex simulations in a reasonable amount of time, a parallel VHDL simulator

should be used to simulate hierarchical structural VHDL circuits. Parallelism is

introduced by partitioning the circuit behaviors among the available processors to form

logical processes (LPs). Signal changes are shared among the LPs by event messages.

Parallelism by itself, however, fails to provide satisfactory speedup results due to the

overhead required to communicate signal changes and maintain synchronization between

LPs. The amount of overhead is directly dependent on how the circuit behaviors are

partitioned among the logical processes.

In this research effort, a circuit behavior inter-dependency structure is extracted from

the first iteration of VSIM's sequential simulation cycle. This information is used to build

a graph representing the structure of the circuit being simulated with the circuit behaviors

as vertices and their inter-dependencies as directed arcs. Using various graph traversal

techniques to account for the circuit inter-dependency structure, the circuit is divided into

the desired number of LPs. A border annealing algorithm is then employed to refine the

quality of the partition by selectively reassigning behaviors to different LPs.

Two relatively large circuits (an 8x8 wallace tree multiplier, and a 16x16 associative

memory array) have been used as subjects on which to test partitioning techniques.

Speedup results are compared to those produced by a random partitioning of the circuit

behaviors.

As an aid in making reassignment decisions during the border annealing process, an

objective cost function is formulated in order to measure the quality of a given partition.
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This cost function is designed to account for the additional communications overhead

resulting from the conservative null message PDES synchronization protocol. In addition,

an attempt is made to account for unevenness in the distribution of the communications

overhead. Finally, an attempt is made at quantifying the relationship between the quality

of a partition as measured by the objective cost function and the resulting simulation

p-Cl ae.

62 Conclusions

The following general conclusions can be made about partitioning hierarchically built

structural VHDL circuit simulations:

" Deliberate partitioning schemes improve simulation speedup. The primary

research objective of demonstrating improved speedup over random partitioning

was accomplished. This research has found that, in general, a deliberate

partitioning algorithm which accounts for the complex inter-dependency

relationships of the circuit behaviors will tend to reduce the communications

overhead and improve the simulation performance.

" The partition cost function must account for more than load imbalance and the

number of inter-LP arcs. As stated in the research objectives, an effort was made

to determine a meaningful method of measuring the cost of a partition. Data

analysis shows that as the number of LPs is increased, the null message traffic due

to the conservative PDES synchronization protocol begins to dominate the inter-

processor communications overhead. Reducing the real message traffic by

reducing the inter-behavior arcs which cross LP boundaries serves to enhance the

dominance of the null message overhead. Not accounting for the null message

overhead will give an inaccurate picture of the quality of a given partition.

Therefore, null message synchronization overhead must be accounted for in the
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partition cost. In addition, this research indicates that the distribution of the

remaining communications among the LPs also impacts the performance of the

simulation. Additional research is needed in order to determine the exact nature of

this latter relationship.

Null message overhead is directly proportional to the number of arcs in the LP

connectivity graph. Results have clearly shown that the number of null messages

required to maintain synchronization is directly proportional to the number of arcs

in the LP connectivity graph (referred to as "LP output lines"). By decreasing the

connectivity between LPs using a deliberate partitioning scheme, it is possible to

r.uce the null message overhead and improve simulation performance. However,

it appears as though the best method for reducing null message overhead is to

avoid imposed feedback among the LPs (i.e. make the LP connectivity graph

acyclic).

* Further reductions in real message overhead will have negligible impact on

simulation performance. The partitioning algorithms used in this thesis research

have made significant reductions in the amount of real message communications

overhead compared to a random partitioning of the circuit behaviors. The null

message overhead is also reduced, but by a much smaller margin. As a result, the

inter-processor communications overhead is dominated by the null message traffic

for a relatively small number of ILPs. The problem is exacerbated as the number of

LPs is increased. Further reductions in real message traffic without significant

reductions in null message traffic will have a negligible impact on the total inter-

processor message traffic.

* The proposed partition cost function provides an accurate means for comparing

the relative quality of different partitions. With few exceptions, it was shown that

by relating the partition cost to the expected simulation speedup, the proposed
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partition cost function could correctly predict the relative performance ordering of

the various partitioning schemes used.

The proposed AB border annealing partitioning algorithm provides an effective

means of iteratively improving a partition. Data analysis shows a consistent

reduction in the number of inter-LP arcs and LP output lines by using the AB

border annealing algorithm. However, due to the continued dominance of the null

message overhead, the corresponding simulation performance improvement is

often insignificant.

6.3 Recommendations for Further Research

6.3.1 Circuit Partitioning Recommendations. Significant progress has been made

in this thesis research towards achieving improved simulation speedup through a

deliberate circuit partitioning strategy. Some suggested areas of research for expanding

upon this progress are:

• Eliminate imposed feedback among LPs. By producing an acyclic LP

connectivity graph, circular waiting among LPs will be eliminated. This will

reduce the amount of LP blocking as well as the the null message overhead. The

suggested methodology ic to produce an acyclic initial partition (treating strong

components as indivisible blocks), and modify the objective cost function so that

LP feedback is not introduced during the border annealing process.

* Continue exploring relationship between the distribution of the inter-processor

communications and the simulation performance. Data from this research has

shown that an uneven distribution of the inter-processor communications may

have a negative impact on simulation performance. The exact nature of this

relationship is still undefined. It is possible that the elimination of feedback

among LPs may negate the effects of uneven communications distribution.
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632 Parallel Simulation Recommendations. There remains significant work to be

done in the future in terms of the parallel VHDL simulation application, VSIM, and

synchronization protocol. Some specific suggestions for further work are:

Implement a more optimistic PDES synchronization protocol. While it may be

possible to gain additional speedup by modifying the rules for sending null

messages, it is unlikely that such gains will be significant. One recommended

approach involves the use of "local rollbacks" (11:22). Under this approach, each

LP maintains a safe-time as in the current null message approach, but is allowed

to process events as fast as possible, potentially advancing its local simulation

clock past its safe-time. However, real messages with timestamps larger than the

safe-time are not sent, but are buffered until it is safe to transmit them. Although

state saving is required in this scheme, it has the advantage that rollbacks to prior

states are local to the LP receiving an out-of-order message. There is no need for

anti-messages to counteract prematurely transmitted real messages. Under this

scheme, the only messages in the simulation will be real messages which transmit

actual signal change information. If desired, a limit can be placed on how far past

the safe-time an LP is allowed to advance. This time window will limit the

amount of state saving overhead, but must be chosen large enough to prevent

circular waiting in feedback loops among the LPs. Numerous alternative

synchronization protocols are possible as well (e.g., conservative time windows,

time warp, lazy cancellation, optimistic time windows, etc. (11)).

Expand the VHDL subset supported by VSIM. Currently, VSIM supports a very

limited subset of the standard VHDL language. This has the effect of limiting the

number of circuits that can be built and simulated in parallel with a reasonable

expenditure of programming resources. Breeden suggests methods for
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implementing two key enhancements: resolution functions and wait statements

(4:83-84). Other suggested enhancements include complex procedures, bit

vectors, and multi-valued logic (MVL) data types.

" Improve the basic VSIM simulation cycle. The basic simulation cycle

implemented in VSIM suffers from large overheads and poor performance.

Current state-of-the-art sequential VHDL simulators available commercially can

simulate a circuit many times faster than the sequential version of VSIM. One

potential source of improvement is with improved list management. Detailed

instrumentation of the simulation cycle may lead to the discovery of other sources

of potential improvement.

"* Improve VSIM's postprocessor. Breeden recommends several options for

improving the postprocessor which transforms the sequential Intermetrics code

into models compatible with VSIM (4:83).

"* Implement selective output report generation. Currently, the only option for

generating simulation output in VSIM is to report all signal changes in the

simulation one at a time. For large circuits, verifying the correctness of such

output files is infeasible. As a minimum, an ability should be provided to allow

selection of which signals to include in the output report. Preferably, formatted

output files such as those produced by Intermetrics should be added.
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Appendix A. Acronyms and Defiions

A.] Glossary of Acronyms

AFIT - Air Force Institute of Technology
ARPA - Advanced Research Projects Agency
IVAN - Intermediate VHDL Attributed Notation
LP - Logical Process
MFA - Mean Field Annealing
PDES - Parallel Discrete Event Simulation
SA - Simulated Annealing
SBF - Simple Breadth-First partitioning
SDF - Simple Depth-First partitioning
SDP - Simple Data Partitioning
SGE - Synopsis Graphic Editor
SPECTRUM - Simulation Protocol Evaluation on a Concurrent Testbed using

ReUsable Modules
TIG - Task Interaction Graph
TPG - Task Precedence Graph
VHDL - VHSIC Hardware Description Language
VHSIC - Very High Speed Integrated Circuit
VLSI - Very Large Scale Integrated

A2 Definitions

activity - The state of an entity over an interval of time (18:135). For example, the
activity of a signal is defined as the sequence of state changes for that signal over a given
time period.

mehavior - In VHDL, a behavior is an executable process representing a logic gate,
input signal, output signal, or other simple VHDL process.

Design Hierarchy - In VHDL, the design hierarchy represents the successive
decomposition of a design entity into components, binding those components to other
design entities that may be decomposed in a similar manner. Collectively, they represent
a complete design and are referred to as a design hierarchy (8:2-11).

3vent - An activity that causes a change in the state of the simulation model (11). In
the context of this thesis, a simulation event is defined as the changing of a signal value
from one state to another.

massage - A message is the mechanism used by processes to communicate the
modified state information caused by a simulation event. In this thesis, the term message
implies communications between logical processes, and thus, corresponds to inter-
processor communications.

model - An abstract representation of a physical system (1). A model consists of
entities and their inter-relationships (18:135).
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Pzocea - A succession of entity states over a contiguous time period (18:136). A
logical process (LP) is the model's representation of a physical process (PP) in the system
(7:198-199).

signal - In VHDL, a signal represents an object that holds a value and corresponds
directly to a metal interconnection within a circuit (8:2-12). Signals define the pathways
among VHDL processes (i.e. behaviors) (15:9).

state - The sum of all variables describing an entity at a given instant in time
(18:135).

system - A real-world process being modeled and simulated (1).
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Appendix B. AFIT Parallel VHDL Simulation User's Guide

B.] Overview.

To execute a parallel VHDL simulation, the VHDL circuit is first compiled with the
Intermetrics VHDL simulator. The intermediate C code is then intercepted and
transformed into models compatible with AFIT's parallel VHDL simulator - VSIM.
VSIM has a sequential mode that can be executed on a single processor system, and a
parallel mode that runs on the Intel iPSCM and iPSCi1860 Hypercubes (4). This appendix
discusses the general process for successfully executing a parallel VHDL simulation
using VS1M and then illustrates this process through a step-by-step example.

B.I.1 Required Files. Figure 57 shows the location of the baselined versions of all
VSIM related files other than the VHDL circuit specific files. The files identified in bold
are required to compile and execute the parallel version of VSIM. The files attached by
dashed lines are executable utility routines used in the code transformation process. These
routines are actually run on the SPARC, but are archived on the iPSCM2 along with the
rest of the VSIM related files.

With the exception of the file application. h, all of the source files listed in Figure
57 can be compiled out of the archive directories. The file application. h must be
modified to identify the desired number of LPs in the simulation, and should be copied to
and compiled from the user's local directory.

A brief description of each source file is listed below (4:91-92).

"* vsim.h - Header file for vinit.c, vsim.c, vtools .c, and vspec.c;
modeled after Intermetrics' simut 1. h.

"* vsim.c - VSIM main simulation loop and associated functions.

CUBE386:
/Usr
I

/Simulate

/Spe'ctrum A11d

/aflt /fliltems /vsim /spectrum /pbuild /mappingII I I I'

K 1 vhdldodcs.c vinit.c applicationh pbuild vmap
vsim.c gWobmls~h plex (+source

ip nan.c [include vsim.h (+ source files)
cube2.c I vspec.c files)
host2.c cube2.h vtools.c

Figure 57. Location of Archived VSIM files on AF1T's iPSC/2 Hypercube
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"• vinit.c - VS initialization routines.

" vtools .c - Functions for printing VSIM state variables and queues to assist in
code maintenance (compilation is optional).

" vspec. c - Functions that provide the interface between VSIM and
SPECTRUM.

" globals.h - Standard SPECTRUM header file. Modified to redefine the
event structure.

" application.h - Contains application-specific global information for
SPECTRUM and vspec.c, and is included by g1obaIs.h.
Specifies the number of LPs for a particular simulation run.

"* lpman. c - Contains SPECTRUM's LP-level functions.

"* cube2. c - Provides interface between lp.man.c and the operating system.

"• cube2.h - Header file for cube2.c and host2, c.

"* host2. c - Host program which loads the nodes and starts the simulation.

B.I2 Process. There are seven basic steps involved in the running of a parallel
VHDL simulation with VSIM (4.90):

1. Develop the original VHDL source code describing the circuit to be simulated and
the testbench to be used to verify the circuit design. The VHDL source code must
comply with the subset of VHDL supported by VSIM as described by Breeden
(4).

2. Perform the Compile, Model Generate, and Build phases of the Intermetrics
sequential simulation.

3. Using VSIM's postprocessor, pbuild, transform the Intermetrics generated source
files into VSIM compatible source code.

4. Compile and run the sequential version of VSIM in order to define the behavior
dependency relationships.

5. Using the VSIM utility vmap, extract the behavior dependency relationships from
the output of the sequential VSIM simulation and generate a .vmap output file.

6. Using the VSIM Graph-Partitioning Tool (gp-tool), read in the .vmap file
generated in the previous step and generate a logical process dependency file
(lpx. arcs) and a behavior-to-LP mapping file (lpx.map).

7. Compile and run the parallel version of VSIM on the Hypercube.

The remainder of this appendix discusses these seven steps in more detail and
concludes with a step-by-step example.
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B.2 Generating the VHDL Source Files.

B2.1 Generating the VHDL Source Code. Step one in the VSIM simulation
process is to create the VHDL source code describing the circuit to be simulated. VSIM
can only support structural circuit descriptions and simple VHDL processes. Specific
limitations ame (4:93):

"* Signals can only be of type bit or bit-vector.

"• Bit-vector signal inputs must be described one bit at atime (e.g., A(1) <- '0'
after 3 ns).

" In general, processes must be one line descriptions (e.g., OUT <- INI XOR IN2
after delay). However, a multi-line process (delimited by begin and end
process) may be used if it: 1) waits on all signals, or 2) terminates after the first
use.

"* Support for VHDL functions and procedures has not been implemented in VSIM.
This means that multi-valued logic (MVL) signals and bus resolution functions
are not supported. Reference (4:93) for more information.

B.2.2 Establishing an Intermetrics User Library. Step two in the VSIM simulation
process involves use of the Intermetrics commercial simulator to compile the VHDL
source code and create the sequential simulation models. The Intermetrics compiler is
located on vulcan in the parallel simulation laboratory. Before establishing a personal
library, the environment variables shown in Figure 58 must be included in the user's
.cshrc file.

The next step is to create the user's individual work library using the sequence of
commands shown in Figure 59. These commands must be executed on vulcan,
substituting the user's own id for "kkapp" (user entries in bold).

The user's work library will only need to be created one time. Once created for the
first circuit, this step may be skipped for future circuit simulations.

B23 Compiling, Model Generating, and Building. After a user library has been
created, the next steps are to compile the VHDL source code creating an IVAN file as
output. The intermediate C source code required by VSIM is ontained by running the
Intermetrics model generate routine on the IVAN file. Finally, running the Intermetrics
build routine on the intermediate source files creates the required compilation script. The

#the following lines are for intermetrics vhdl
setenv VHDLTREE /usr6/vhdl_restore/intervhdl/v2.1
setenv VHDL COMMON /usr6/vhdl restore/inter vhdl/v2.1/conmon
setenv VHDL_-HELP FILE /usr6/vhdl restore/inter vhdl/v2.1/common/help.txt
setenv VHDL_--LIBROOT /usr6/vhdlrestore/intervhdl/v2.1/shiplib
setenv VHDL LIBSIM /usr6/vhdl restore/inter vhdl/v2.1/src/simcore/libsim.a
setenv VHDL-BIN /usr6/vhdlrestore/intervhdl/v2.1/bin
set path = ($path /usr6/vhdlrestore/intervhdl/v2.i/bin)

Figure 58. User .cshrc Setup for Running Intermetrics
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vulcan:-> v1a
Standard VHDL 1076 Support Environment Version 2.1 - 1 September 1990
Copyright (C) 1990 Intermetrics, Inc. All rights reserved.
VLS >ukeiib -dizr-/usrl/vhd_,_ rtor/intervbdl/v2 ..1/shiplib/kkapp <>kkapp
VHDVLS-I-CREATED LIB - Library <<KKAPP>> successfully created.
VLS>dafine work <.kkapp>>
VLS>setlib <<kkapp>>
VHDVLS-I-DEFAULTLIBRARY - Default Library is <<KKAPP>>.
VLS>diz
VHDVLS-I-NO UNITS - No units found in <<KKAPP>>.
VLS>ezit
vulcan: ->

Figure 59. Setting up User Work Library for Intermetrics

specific steps are listed below.

"* Each VHDL source code file must be individually compiled with the Intermetrics
vhdl command (e.g., vhdl orgate. vhd).

"* Each entity/architecture pair must be "model generated" using the Intermetrics mg
command with the -debug-cknd debug switch (e.g., mg -debug=cknd
or_gate(simple)).

"* The top-level configuration is built using the Intermetrics build command (e.g.,
build '-debug-cknd -replace -ker-assocmem assoc_memconfig').

B.2.4 Code Transformation. The third step in the VSIM simulation process
involves the transformation of the intermediate C source code created by Intermetrics
into models that are compatible with VSIM. The inputs for this phase are the intermediate
.c and .h files created during the model generate phase, and the compilation script created
during the build phase. The compilation script enables the VSIM postprocessor to
determine the required files and their correct order of compilation.

VSIM's postprocessor, pbuild, is invoked as follows:

pbuild script circuit .c

where script is the name of the compilation script created during the build phase (also
referred to as the "Kernel corn" file), and circuit is the name of the circuit being
simulated.

The postprocessor, pbuild, works by concatenating each of the intermediate .c files
into a single file named "big-circuit .c" and calling VSIM's lexical analyzer, plex, to
perform the transformation process, creating the output file circuit . c.

The final step in the code transformation is to copy all of the required header files to
the same directory as the circuit. c file. These header files will also have to be
transferred to the target parallel machine with the circuit. c file before executing the
parallel simulation. The header files can be found in the user's work directory 18.

18 Unless the user has compiled them into another directory using commands in the VHDL somce code.
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B.23 Transforming Large Circuit Files. A known problem with VSIM's
postprocessor is that the circuit . c file resulting from the transformation of large circuit
simulations may be too large to compile on the Intel Hypercubes. There are two general
methods for getting around this problem (4:95):

" Run plex on each individual Intermediate C source code file created during the
model generate phase. Compile the resulting output into separate object files and
link them together to execute VSIM on the hypercubes.

"Construct the original VHDL circuit description using hierarchical configurations.
This results in a significant reduction in the size of the corresponding circuit . c
file. However, the postprocessor is currently unable to properly process the
#include directives necessary for the compilation of the circuit. c file. These
must be manually inserted into the circuit. c file, and can be found by an
examination of the "big_circuit. c" file created by the postprocessor. Both the
wallace-tree and the associative-memory were created in this manner.

Refer to (4:95-97) for more detailed information.

B3 Running Sequential VSIM.

Both the Intermetrics simulator and the VSIM simulator assign each behavior a
number at run time. Therefore, before mapping the behaviors onto the parallel
architecture, VSIM must be run in sequential mode in order to determine the numbering
of the behaviors and the behavior inter-dependency relationships. This is accomplished
by using the following compile options in the makefile:

-DSPIAC -DMNPING -DOUTPUT

The SPARC option specifies that the simulation is to be sequential. Note that in the
sequential version of VSIM, the SPECTRUM files (lp_man.c, cube2 .c, cube2 .h,

host2 .c, and vhdlclocks. c) are not required.
The MAPPING option specifies that the behavior dependency relationships are to be

reported to an output file. When defined, the MAP PING option is automatically turned off
after the simulation time advances past 0.

The OUTPUT option specifies that signal changes are also to be reported to the output
file. Output is not required. However, when running a circuit for the first time, it is useful
to have output reported for comparison with the Intermetrics output. Note that VSIM does
not have a method for selectively deciding which signals to include in the output file - it
is an all or nothing option.

Theoretically, if OUTPUT is not defined, the sequential simulation can be terminated
after simulation time 0 when all of the required dependency information has been
reported to the output file. However, there is currently no means implemented for
accomplishing this.
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B.4 Running Parallel VSIM.

B.4.1 Generating the Partition. Before running the simulation in parallel, the
chrcuit behaviors must be divided into logical processes (LPs), each of which will be
assigned to a different processor. Using the output of the sequential simulation which was
created with MAPPING defined, the VSIM utility program vmap is used to build a file
defining the interdependency relationships of the behaviors in the circuit. For example,
given the sequential output file circuit out, vmap is invoked as follows:

vMap cizcuit.out circuit.vmap

where circuit. vmap is the vmap output file with the following format:

behav id behavname behavdelay [optional list of dependencies]

An example vmap output file is shown in Figure 60. If the OUTPUT option was defined,
the script sgrep can be used to sort the output by time and signal name as follows:

agrep circuit.out output

The sorted output data will be in file output, and can be compared to the Intermetrics
simulation output in order to verify correctness.

The vmap output file is used as input to the VHDL Graph-Partitioning Tool (GP-Tool)
which builds a directed graph from the behavior dependency information in the file. GP-
Tool is a menu-driven utility program which allows the user to select from a variety of
partitioning algorithms. Reference the GP-Tool User's Guide for detailed instructions on
using this utility.

Of the numerous output files created by GP-Tool, the most important are the two files
that are required for the parallel execution of VSIM. These are the logical process
dependency file (lpx. arcs) and a behavior-to-LP mapping file (ipx .map). The user will
be prompted to enter these file names, and should enter them exactly as shown here, with
the "x" replaced by a numeric value specifying the number of LPs in the partition (e.g.,
lp8. arcs and lp8.map).

The specification for the lpx. arcs file is shown in Figure 61. The lpx.map file is a
text file containing two columns of numbers. The first column lists each behavior id
number, while the second column lists the corresponding LP number to which the
behavior is assigned. Examples of an lpx. arcs file and an lpx. map file are shown in
Figures 62 and 63 respectively. Both of these files are read in at run time, and must be in
the same directory as the VSIM application.

9 ET DFFTESTBENCH(STRUCTURAL) 0 1 2
8 ET DFF TESTBENCH(STRUCTURAL) 0 3
7 ETDFF(STRUCTURAL) 0
6 ET DFF(STRUCTURAL) 0
5 NARDGATE(SIMPLE) 3000000 4 7
4 NANDGATE(SIMPLE) 3000000 5 6
3 NANDGATE(SIMPLF,) 3000000 0 2
2 THREE INPUT NAND GATE(SIMPLE) 3000000 3 5
1 NAND_GATE(SIMPLE) 3000000 0 2 4
0 NANDGATE(SIMPLE) 3000000 1

Figure 60. Example VMAP Output File
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0 # LP index
2 # Number of input Lpa
1 2 # LP indices of input LPs
0 0 # Polling frequencies of input LPs
0 0 # Offset of polling frequency
2 # Number of input lines
1 2 # LP number for each input line
2 # Number of output LPs
2 3 # LP indices of output LPs
2 # Number of output lines
2 3 # LP index for each output line
3000000 5000000 # Minimum delays for each output line

Figure 61. Format Specification for lpx. arcs Files (4:98)

0
1
2
0
0
1
2
1
1
1
1
3000000

1
2

02
00
00
2
02
1
2
1
2
3000000

2
1

1
0
0
1
1

2
01
2
01
3000000 3000000

Figure 62. Example lpx. arcs File with 3 LPs
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60
50
40
81
31
7 1
92
1 2
02
22

Figure 63. Example lpx.map File with 3 LPs

B.42 Execute Parallel Simulation on the Hypercube. The final step in the VSIM
parallel simulation process is to copy the necessary files to the target platform, compile
the simulation, and execute it on the desired number of nodes. The following files are
needed on the hypercube:

"• The circuit specific C source code (i.e. the "circuit. c" file).

"• The header files associated with the "circuit. c" file; these header files have file
names of the form FNt###, where ##*# is a numeric value determined by the
Intermetrics toolset.

"* The appropriate lpx. arcs and ipx.map files for the desired circuit partition.

"• A makefile to compile the appropriate VSIM, SPECTRUM, and circuit specific
files.

In addition, the header file application. h will have to be modified to define the desired
number of LPs. Thus, application. h will have to be copied to, and compiled out of, the
user's local directory. It is a good idea to also copy the file globals. h to the same local
directory. If application.h is placed in a directory -/spectrum in the user's main
directory, the VSIM utility set ips can be used to set the number of LPs without
requiring the user to manually edit application . h. It is invoked as follows:

setips #

Where # is the number of LPs desired. However, a: currently implemented, set lps will
only work if the number of LPs is <9.

The simulation is now ready for compilation on the hypercube. Note that the VSIM
code will have to be recompiled each time the number of LPs is changed in
application.h, but the circuit specific code will have to only be compiled once. The
makefile should handle this automatically. Once compiled for a given number of LPs,
however, the simulation may be run with different partitions by replacing the lpx. arcs
and lpx. map files with no need to recompile.

The simulation should be compiled with the following options:

-UaPPIu -UOU= PT -DCOUNTS -UMXMTORCUDZ

The MAPPING option is undefined because the behavior inter-dependency relationships
are already known. The OUTPUT option is also undefined because the simulation output
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creates a performance bottleneck. The AFIT research surrounding VSIM has concentrated
-. ' computational speedup and has assumed that other research will adequately address
the problems caused by large amounts of output data in parallel simulation applications.
However, the OUTPUT option can be defined if the user desires to verify the results of the
parallel simulation.

When defined, the COUNTS option causes VSIM to report real, null, and total message
counts to the LP's "log" in addition to the normal timing information. If the MONITORCUBE
option is defined, each LP will periodically report its simulation time to the terminal
screen so that the user can verify that the simulation is progressing. Other options
available are the DEBUG and REPORT options which will report very large amounts of data
to each LP's "log" file.

After the compilation is complete, the simulation can be started by invoking the host

program. The user will then be prompted for the name of the circuit program to load, the
command line parameters (simulation end time in ns), the number of nodes to use, and the
number of LPs in the application (one LP per node). If the number of LPs entered does
not match the number in application. h, the program exits with an error message.

After the simulation is completed, the simulation timing data will be in a series of
"log" files - one for each LP (e.g. logO, logi, log2, ... ). These can be concatenated
together to provide a summary report for the simulation run. If OUTPUT was defined, each
LP's output data will be in an ipx. out file (where x is the LP number). These files can be
concatenated and then sorted with the sgrep utility to provide a file that can be compared
with the sequential simulation output.

B.5 Step-by-Step Example.

This section illustrates the VSIM parallel simulation process with a step-by-step
example using the edge-triggered D flip-flop (etdff) as the example circuit.

B.5.1 Develop VHDL Source Code. The s-'cific rules and limitations for
developing the original VHDL source code are discussed in section B.2.1. Refer to (4) for
more detailed information. The VHDL source code files for the et dff circuit are
archived on the iPSC/2 (cube386) in the directory -/usr/simulate/vhdl/etdff, and
all end in a .vhd extension.

B5.2 Compile, Model Generate, and Build. In this example, it is assumed that the
user has already set up an Intermetrics work library as described in section B.2.2. In order
to compile, model generate, build, and simulate the circuit with Intermetrics VHDL, a
".corm" file similar to the following is required:

#!/bin/csh -v
# filename -> et dff.com
vhdl -/vhdl/aox_gates/nand_nor.vhd
vhdl et dff.vhd
vhdl et dff test bench.vhd
vhdl etdffconfig.vhd
mg '-debug-cknd nandgate (simple),
mg '-debug-cknd threeinputnandgate (simple)'
mg '-debug-cknd et dff(structural)'
mg '-debug-cknd et dff testbench(structural)'
mg *-debug-cknd -top et-dff config'
build '-debug-cknd -replace -ker-etdff etdff config'
sim et dff
rg et-dff etdff.rcl
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In this example, the file is named etdff . corn and is executed as follows:

-/vhdl/etdff> et_dff.ccm > etdff.out

The activities of the signals specified in the "report control language" file
et dff. rcl will be reported in the output file etdf f .rpt, and can be used to validate
the output of VSIM later.

The file et tdff out will contain a record of the Intermetrics compilation, model
generate, and build sessions. This file will contain a list of all the header files (of the form
FN####) necessary to compile with VSIM, as well as the "Kernel corn" file (the
Intermetrics compilation script). To extract this information, the following commands
may be used:

-/vhdl/et dff> move at_dff.out I grep 'H file'
-/vhdl/et dff> more et_dff.out I grep Kernel

The user should make note of the name of the "Kernel corn" file for use with the
postprocessor pbuild. The header files should be copied to the current directory from the
user's work library. For example, if the work directory is /usr/vhdl/shiplib/kkapp,
the following command can be executed for each header file listed in et_df f. out:

-/vhdl/etdff> cp /usr/vbdl/shiplib/kkapp/lN####

B.5.3 Run Postprocessor to Transform Code. The "Kernel com" file is the
compilation script that the postprocessor uses to build the VSIM compa ble code from
the Intermetrics code. The output report of the postprocessor is always written to a file
called plex. log in the same directory. The postprocessor pbuild is invoked as follows:

-/vhdl/etdff> pbuild rN#### et_dff.c

Note that pbuild concatenates all of the relevant intermediate source code files into one
large source file (for this example, it is called "big et dff . c"), and then performs a
series of transformations on it using the lexical utility plex to produce the VSIM source
file (e.g. etdf f .c) . In the process of the transformation, not all of the necessary
#include directives are always included in the transformed source file. They can be
extracted from the "big" source file by using the grep command, and then manually
inserted into the transformed source file. This usually only happens on large circuits (e.g.
the wallace tree multiplier). Reference (4) for more detailed information.

B.5.4 Run Sequential VSIM Simulation. The following files are needed on the
sparcstation in order to rua the sequential VSIM:

-/kkapp/vhdl/vsim/vinit. c -/kkapp/vhdl/spectrum/globals .h
vsim.c application.h
vsim.h
vspec, c
vtools, .c

To compile VSIM, a makefile is required. The example makefile below compiles
VSIM on the SPARC using the command "make vsim."
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# SPARC macros for sequential execution - type "make voim"

SPARC SIMPATH-/usr2/eng/kkapp/vhdl/vsim
SPARC CKTPATH-/usr2/enq/kkapp/vhdl/ot_dff
SPARCSPECPATH-/usr2/eng/kkapp/vhdl/ spect rum

SPARCOBJS-${SPARCSINPATH)/voim.o \
${SPARC_SIIWATHE/vinit.o \
${SPARCSIMPATH}/vtools.o \
$1 SPARCCKTPATH)/et_dff.o

SPARC CFLAGS--c -w -9 -DSPARC -DMAPPING -DOUTPUT

# Compiles VSIM for sequential operation on the Sun SparcStations.

vaim: $ ISPARCOBJSI
$(CC) -o etdff -9 $(SPARCOBJS)

$SSPARCSINPATH)/vsim.o: $(SPARCSIMPATH)/vaim.c \
$(SPARCSIMPATH) /vsim.h

cd $(SPARCSINPATH); \
$(CC) $(SPARCCFLAGS) -I${SPARC SPECPATH) vsim.c

$ (SPARCSIMPATH) /vinit.o: $(SPARCSIMPATH)/vinit.c \
$1SPARC_SIMPATH)/vaim.h

cd $1SPARC SIMPATH); \
$(CC) $(SP-ARCCFLAGS) vinit.c

$ (SPARCSIMPATH) /vtools.o: ${SPARC SIMPATH)/vtools. c \
$4 SPARCSIMPATH) /vaim.h

cd ${SPARCSIMPATH); \
$(CC) $(SPARCCFLAGS} vtools.c

${SPARCCKTPATH}/etdff.o: et dff.c ${SPARCSIMPATH)/vsim.h
$(CC) $(SPARCCFLAGS) -I${SPARCSIMPATH) etdff.c

Once the makefile has been completed, the following commands compile and run
the sequential version of VSIM:

-/vhdl/etdff> make vaim
-/vhdl/etdff> et dff > toW

The output in temp will be in time order. However, the following command will do a
secondary sort by signal name and place the output in the file etdff . out:

-/vhdl/etdff> agrep tW et dff.out

The data in et dff out can now be compared to the Intermetrics output for
accuracy verification. However, the only way to do this is manually, since the two output
reports will be in different formats.

B.5-5 Extract Behavior Dependencies using VMAP. Since MAPPING was defined
during compilation, the output in temp also has behavioral information (behavior names,
id numbers, and dependencies). Using vmap, this information can be filtered out of temp
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and saved. The vmap program attempts to "guess" the delays of each behavior, based on
when dependent behaviors are scheduled. The user is given a chance to override these
guesses. In most cases, the behaviors which represent gates show correct delays; the
other "system" behaviors should be set to a delay of zero. To run vmap, type the
following and respond to the prompts as appropriate (output will be written to
et_dff.vmap):

-/vhdl/etdff> vmap twW et_dff.vmap

The mapping of behavior numbers to actual behaviors is done automatically by
VSIM. Currently, the only way to verify this mapping is to compare the output of either
VSIM or vmap to the schematic.

B-5.6 Generate the Circuit Partition for Parallel Execution. Using the output file
from the previous step (e.g., et dff .vmap), use the VHI-L Graph-Partitioning Tool (GP-
Tool) to generate the partition for the desired number of LPs. Reference the GP-Tool
User's Guide for specific instructions on generating the partition. The needed files from
this step are the lpx. arcs and the lpx .map files, where x is the number of LPs.

B-5.7 Compile and Execute the Parallel Simulation. Copy the necessary files
specified in section B.4.2 over to the hypercube. Before compiling, a makefile to
compile the appropriate files is required. The example make file below compiles VSIM
on the iPSC/2 hypercube using the command "make ipsc."

# iPSC macros for parallel execution on iPSC/2 - type "make ipsc"

# local paths
MY_SIMPATH-/usr2/eng/kkapp/vsim
MYCKTPATH-/usr2/eng/kkapp/et-dff
MYSPECPATH-/usr2/eng/kkapp/spectrum

# afit paths
AFITSIMPATH-/usr/simulate/vhdl/vsim
UVA-SPECPATH-/usr/simulate/spectrum/afit
AFITSPECPATH-/usr/simulate/spectrum/afit
AFITSPECPATHINC-/usr/simulate/spectrum/afit/include
AFITFILTERPATH-/usr/simulate/spectrum/filters

SPECHE.ADERS-$ {MY_SPECPATH) /globals.h $ (MY_SPECPATH) /application .h

MYOBJECTS-$(MY_S IMPATH}/vsim.o
${MYSIMPATH)/vinit.o
${MY_SIMPATH)/vtools.o
${MY_SIMPATHI/vspec.o
${bMY_SPECPATHI/lp_man.o
${MYSPECPATH)/cube2.o
${MY_SPECPATH)/vhdlclocks.o \
${MYCKTPATH)/etdff.o

MYCFLAGS--c -w -UMAPPING -UOUTPUT -DCOUNTS -DMONITORCUBE

ipsc: host node
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host: S(IYý_SPZCPATII)/host2.o
$ (CC) -c host ${KY_SPECPATH)/host2.o -host

node.- $IMY_OBJECTS)
$(CC) -o et-dff ${KY_OBJECTS) -node

# compiles host2.c out of the archive directories
$(Ký_SPECPATHI/host2.o: $IAFITSPECPATH)/host2.c\

${AFITSPECPATHINC)/cube2.h
od $(IKYSPECPATHI;\
$(CC) ${KYCYLAGS) -IsfAFITSPEOPATHINC) $IAFITSPECPATH)/host2.c

# compiles vsim.c out of the archive, directories
${MY SIHPATH)/vsia.o: ${AFITSIMPATH)/vsim-c\

$(AFITSIHPATHI/vsim.h\
$M(N_SPECPATH)/globals.h\
$ (NY_SPECPATH) /application. h

cd $(I!YSINPATH); \
$(CC) ${KI(CFLAGS) -1$(NYý_SPECPATH) $(AFITSIMPATH)/vsima.c

# compiles vinit.c out of the archive directories
${NYSIMPATH)/vinit.o: $IAFITSIMPATH)/vinit.c \

$IAFITSIHPATHI/vsim.h \
${NYý_SPECPATH)/globals.h\
${MY_SPECPATH) /application.h

cd $(4Yý_SIMPATH); \
$(CC) ${MYCFLAGS) -I$(MY_SPECPATHI $(AFITSIMPATHI/vinit.c

# compiles vtools.c out of the archive directories
$(NYSIMPATH)/vtools.o: $(AFITSIMPATH)/vtools.c\

$IAFITý_SINPATH) /vsim.h
cd $iNYý_SIMPATH); \
$ (CC) ${MYý_CFLAGS) $(AFIT-SIMPATH) /vtools .c

# compiles vspec.c out of the archive directories
$(KYý_SIHPATH)/vspec.o: ${AFIT_SIMPATH)/v'spec.c\

${AFITSIMPATH)/vsim.h\
S(MYS7PECPATH)/globals.h\
${MYý_SPECPATH) /application.h

cd ${KY_SIMPATH); \
$(CC) $(MYý_CFLAGS) -I$jMY_SPECPATH) $IAFITSINPATH)/vspec.c

# compiles lp~man.c out of the archive directories
${MY_SPECPATHJ/lp_.man.o: $(UVASPECPATH)II/pma.c\

$({SPECHE.ADERS)
cd S{14YSPECPATH); \
$(CC) $TMYý_CFLAGS) -I${NYý_SPECPATH) ${UVASPECPATH1/lpmwan.c

*compiles cube2.c out of the archive directories
$(MYSPECPATH)/cube2.o: ${AFIT SPECPATH)/cube2.c\

$ (SPECHEADERS)
$(AFITSPECPATHINC)/cube2.h

cd S{MY_SPECPATH); \
$(CC) ${NYý_CFLAGS) -I$(AFITSPECPATHINC) -I$(MY_SPECPATH)

${AFITSPECPATH)/cube2.c

# compiles vhd~lclocks.c out of the archive directories
${MYSPECPATH)/vhdlclocks .o: ${AFITFILTERPATH) /vhdlclocks.c\

$ (SPECHEADERS)
cd $(MYSPECPATHI; \
$(CC) ${MY_CFLAGS) -I$(MYý_SPECPATH) ${AFITFILTERPATH)/vhdlclocks.c
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# compiles et dff.c out of local directory
${MS_CKTPATH}/et dff.o: etdff.c $(AFITSIMPATH)/vsaim.h

$(CC) $(MY_C-LAGS) -I$(AFITSIIIPATH) et dff.c

Once the makefile has been completed, the following command compiles the
parallel version of VSIM:

c386 #: setips # (where # is the number of LPs desired).
c386 #: make ipac

It should be noted that the exact command depends upon the makefile. In the VSIM
archives, a makefile is provided with each circuit that will compile on the SPARC with
the command "make vsiM," on the iPSC/2 with the command "make ipsc," or on the
i860 with the command "make i860." These makefiles can be used as templates for
future circuits.

The simulation is started by invoking the host program and typing the appropriate
information at the prompts, including entering the simulation end time in ns as a
command line argument. Below is an example simulation session for two LPs (user
entries in bold):

CUBE386: /usr2/eng/kkapp/et dff > host
Which application do you want to use?:et dff
Enter the command line arguments for the program (RETURN if none):
>2000
Is assignment of logical processes to nodes to be from a file? (y/n) -> n

The cube is being used as follows:
CUBENAME USER SRM HOST TYPE TTYS
iocube root cube386 cube386 0
How many cube nodes do you want to use? (0 to ABORT):2
How many LP's are in this application?:2
Do you want to use the 'natural' node assignment? (y/n): y
Getting cube of size 2 - stand by.
load -H -p 0 0 et dff 2000
load -H -p 0 1 etdff 2000
startcube
Cube Loaded
LASTTIME message from LP 0 on node 0, pid 0.
LASTTIME message from LP 1 on node 1, pid 0.

End stats messages:
LP 0 (node 0, pid 0): 661 received, 672 sent.
Max message count set at 10, Max messages removed was 2.
LP 1 (node 1, pid 0): 672 received, 661 sent.
Max message count set at 10, Max messages removed was 1.
HOST: Total CPU time waiting: 0.000000 (msecs)
HOST: Wall clock time loading cube: 5 (secs)
HOST: Wall clock time waiting: 2 (secs)
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Each LP will rcord its timing data in a "log" file (e.g. logo for LPO). With couNTs
defined during compilation, these files will also contain message traffic information. The
files can be concatenated and viewed as follows:

CUBE386: /usr2/eng/kkapp/etdff > cat logO logI > tim2.out
CUBE386: /usr2/eng/kkapp/etdff > zoz1 tiim2.out

VSIM LPO reports total time of 863
LPO NULLs Sent - 652
LPO NULLs Posted - 0
LPO NULLs Processed/Deleted From Myself - 0
LPO NULLs Processed/Deleted From Another LP - 653
LPO NULLs Annihilated - 0
LP0 Reals Sent - 20
LPO Reals Posted - 0
LPO Reals Processed From Myself - 0
LPO Reals Processed From Another LP - 8
LP 0 wall time taken is 2.107 (secs)
LP 0 messages received 661
LP 0 messages sent 672

VSIM LP1 reports total time of 851
LP1 NULLs Sent - 653
LP1 NULLs Posted - 0
LP1 NULLs Processed/Deleted From Myself - 0
LP1 NULLs Processed/Deleted From Another LP - 652
LP1 NULLs Annihilated - 0
LPl Reals Sent - 8
LP1 Reals Posted - 0
LP1 Reals Processed From Myself - 0
LP1 Reals Processed From Another LP - 20
LP 1 wall time taken is 2.098 (secs)
LP 1 messages received 672
LP 1 messages sent 661

If OUTPUT was defined during compilation, the signal change information for each LP
will be in a file called ipx. out (where x is the LP number). These files can be
concatenated and sorted with sgrep for comparison with the sequential output
(et dff.out).
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Appendix C. Graph Partitioning Tool (GP-Tool)

C.) GP-Tool User's Guide

C.).1 Overview. Prior to executing a parallel VHDL simulation using VSIM, it is
necessary to divide the simulation workload among the available processors. This
process, referred to as circuit partitioning, is accomplished by the VHDL Graph-
Partitioning Tool (GP-Tool). GP-Tool builds a behavior inter-dependency graph from a
circuit description file and provides several partitioning options for assigning the vertices
of the inter-dependency graph to the specified number of logical processes (LPs). This
section describes how to use GP-Tool to read in a circuit description file and generate the
partition output files required by VSIM's parallel mode.

The current version of GP-Tool (version 2.0) is an extension to the VHDL Graph
Searching Program, henceforth referred to as the original version of GP-Tool. It was
written in 1992 by Maj Eric R. Christensen, USA, instructor at the Air Force Institute of
Technology, in order to provide a random mapping of the VHDL behaviors onto the
logical processes of the parallel simulation. The ability to perform a topological sort on
the nodes in the problem-graph was also provided (25). GP-Tool is implemented in the
Ada programming language using the Sun Ada Compiler, version 1.1 (available on
aurora in the ART parallel simulation laboratory).

C.1)2 Building the Behavior Inter-Dependency Graph. The introductory screen to
GP-Tool is shown in Figure 64. It describes the required format of the circuit description
input file and prompts for the input filename (e.g. "et_dff.vmap" in Figure 64). The
circuit description file contains a list of circuit behaviors along with their names, logical

Welcome to the VHDL Graph Partitioning Tool (GP-Tool) - Version 2.0

This program reads a file with the following format:
- Integer, space, String(l..80 characters), Integer, newline

or 1..N integers followed immediately by a newline
- The 1..N integers are considered adjacencies to the first integer

The program then builds a graph of the adjacencies and dependencies

Enter the Name of the input data file:

etdff.vmap

-- Reading Input File and Inserting Vertices in the Graph
-- Reading Input File and Inserting Arcs in the Graph

Figure 64. GP-Tool Introductory Screen
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9 ET_DFFTESTBENCH(STRUCTURAL) 0 1 2
8 ET_DFFTEST BENCH(STRUCTURAL) 0 3
7 ET_DFF(STRUTURAL) 0
6 ETDFF(STRUCTURAL) 0
5 NANDGATE(SIMPLE) 3000000 4 7
4 NANDGATE(SIMPLE) 3000000 5 6
3 NAND_GATE(SIMPLE) 3000000 0 2
2 THREEINPUTNANDGATE(SIMPLE) 3000000 3 5
1 NANDGATE(SIMPLE) 3000000 0 2 4
0 HAND_GATE(SIMPLE) 3000000 1

Figure 65. GP-Tool Input File "et-dff.vmap"

delays, and list of dependencies. With this information, GP-Tool builds a directed graph
data structure, with each vertex corresponding to a circuit behavior, and each arc
representing a unique behavior-to-behavior dependency.

GP-Tool assumes that the input file contains a line for each behavior, and that each
behavior description conforms to the required format specification. The current version of
GP-Tool does not contain the error detection and recovery mechanisms necessary to
compensate for discrepancies in the input file. An incorrect input file may result in
erroneous partition output files, or may cause the program execution to be abandoned.

Correctly formatted input files can be produced by following the instructions in
sections B.3 and B.4 of the AFRT Parallel VHDL Simulation User's Guide (Appendix B)
for using the vmap utility program. The output files created by vmap conform the GP-Tool
input file specifications. An example vmap output file for the edge-triggered D flip-flop of
Figure 18 is shown in Figure 65.

C.13 Main Menu Options.

C.13.1 Generate Delay and Adjacency Information File. In the original
version of GP-Tool, the lpx. arcs files were not created directly. Rather, an intermediate

* * ** GP-TOOL MAIN MENU *

Select one of the following operations:
1 : Generate Delay and Adjacency Information File
2 : Generate SGE Data File
3 : Generate Topological Sort File
4 : Generate Strong Components File
5 : Generate Behavior to Logical Process (LP) Mapping File(s)
0 : Quit GP-Tool

Enter your menu choice now:

Figure 66. GP-Tool Main Menu

155



"SIZE
10

*SOURCE

8 0
90

* SERVER
0 3000000
1 3000000
2 3000000
3 3000000
4 3000000
5 3000000

*SINK

6 0
7 0

*NETWORK

0 1
1024
235
302
456
547
6

7
8 3
912

Figure 67. Example Delay and Adjacency File for Edge-Triggered D Flip-Flop

file was created which, along with the Ipx. map file, was used as input to a separate utility
application called build arc which produced the required lpx. arcs file. The delay and
adjacency information File created by this menu option represents that intermediate
description file. An example for the edge-triggered D flip-flop is shown in Figure 67.

However, the application build arc is no longer supported and is unable to handle
large input files. As a result, the functionality to produce the lpx. arcs files was built into
the current version of GP-Tool, obviating the need for this output file. Nevertheless, the
option has been retained in the event that it is needed in the future.

C.132 Generate SGE Data File. The second main menu option allows the
user to create a graph description data file that can be read by the commercial Synopsys
design analyzer to produce a graphical representation of the input graph that can be
displayed using the Synopsys Graphic Editor (SGE). Again, this is a feature of the
original version of GP-Tool that was retained for possible future applications. The
process for setting up the Synopsys design analyzer and processing the SGE data file
produced by GP-Tool to attain the graphic representation is rather complex and is not
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The Number of Arcs is 15
The Following Nodes have no Inputs

I8 19
The Following Nodes have no Outputs
06 07

ADJ NO AO
DEP NO Al A3
ADJ Ni Al Al Al
DEP N1 AO A9
ADJ N2 A2 A2
DEP N2 Al A3 A9
ADJ N3 A3 A3
DEP N3 A2 A8
ADJ N4 A4 A4
DEP N4 Al A5
ADJ N5 A5 A5
DEP N5 A2 A4
ADJ N6 06
DEP N6 A4
ADJ N7 07
DEP N7 A5
ADJ N8 A8
DEP N8 18
ADJ N9 A9 A9
DEP N9 19

Figure 68. Example SGE Data File for Edge-Triggered D Flip-Flop

discussed here. An example SGE data file produced by GP-Tool for the edge-triggered D
flip-flop is shown in Figure 68.

C.133 Generate Topological Sort File. The third main menu option allows
the user to create a topological ordering of the nodes in the behavior inter-dependency
graph. This ordering specifies the order in which the circuit behaviors would have to be
executed if simulated sequentially. This is another feature of the original version of GP-
Tool that was retained for possible future applications. An example topological sort
output file for the edge-triggered D flip-flop is shown in Figure 69.

C.13.4 Generate Strong Components File. The fourth option on the main
menu is for performing a strong component search on the behavior inter-dependency
graph. An example output file for the edge-triggered D flip-flop is shown in Figure 70.

N9 N8 N2 Ni N3 N7 N6 N5
N4 NO

Figure 69. Example Topological Sort File for Edge-Triggered D Flip-Flop
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GRAPH INFORMATION - et dff.vmap

The number of vertices in this graph is -- 10
The number of arcs in this graph is : 15

PARTITION INFORMATION - Strong Component Search

Number of components : 6
Inter-component arcs : 7

The Strong Component sizes are
4 2 1 1 1 1

Component Number 0 - Size: 4 - Local Arcs: 6

2 3 0 1

Component Number 1 - Size: 2 - Local Arcs: 2

5 4

Component Number 2 - Size: 1 - Local Arcs: 0

6

Component Number 3 - Size: 1 - Local Arcs: 0

7

Component Number 4 - Size: 1 - Local Arcs: 0

8

Component Number 5 - Size: 1 - Local Arcs: 0

9

Figure 70. Example Strong Component File for. Edge-Triggered D Flip-Flop

C.1.3.5 Generate Behavior to LP Mapping Files. The fifth option on the GP-
Tool main menu takes the user to a sub-menu with options for generating partition files
using one of several partitioning strategies implemented in GP-Tool. The GP-Tool
behavior mapping sub-menu is shown in Figure 71, and is discussed in further detail in
the next section.

C.1.4 Mapping Menu Options.

C.1.4.1 Generate Partitioning Files. Options 1-6 on the GP-Tool behavior
mapping sub-menu allow the user to create the circuit partition files lpx. map and
lpx. arcs required to execute the simulation in parallel using VSIM. In addition, a
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GP-TOOL BEHAVIOR MAPPING MENU *

Select one of the following operations:
I : Generate Random Partitioning File
2 : Generate Simple Depth-First Partitioning File
3 : Generate Simple Breadth-First Partitioning File
4 : Generate ABi-Annealing Partitioning File
5 : Generate AB2-Annealing Partitioning File
6 : Generate AB3-Annealing Partitioning File
7 : Turn the .MAP and .ARCS output OFF
8 : Modify the Cost Function Parameters
9 : Return to Main Menu
0 : Quit GP-Tool

Enter your menu choice now:

Figure 71. GP-Tool Behavior Mapping Sub-Menu

partition statistics file is created such as the one shown in Figure 27. The following
partitioning options are available:

""andom Partition - Use a random number function to randomly distribute
the behaviors among the specified number of LPs, ignoring the behavior inter-
dependency relationships. The user will be prompted to input a random stream
number between 1 and 100 that is used as an input to the random number
generator. This is the only partitioning option that was available in the original
version of GP-Tool.

". Simple Depth-First (SDn) Partition - Use a depth-first search algorithm
to traverse the behavior inter-dependency graph and determine the LP
assignments.

" Simple Breadth-First (S88) Partition - Use a breadth-first search
algorithm to traverse the behavior inter-dependency graph and determine the LP
assignments.

"* AB1-Annealing Partition - Use the AB border-annealing algorithm to
refine an initial SDF partition.

"* A£2-Annealing Partition - Use the AB border-annealing algorithm to
refine an initial SBF partition.

"* A£3-Annealing Partition - Use the AB border-annealing algorithm to
refine an initial random partition.

Each of the AB Annealing partition options require a set of input parameters to
control the border annealing process. The parameters that are specific to the AB
Annealing algorithm are presented to the user in a sub-menu after the user has specified
the number of LPs and entered the appropriate file names.
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**************** AB-ANNEALING PARAMETERS *** *

The current parameter values are:
1 : Number of Iterations - 500
2 : Max Number of Worthless Iterations - 50
3 : Load Imbalance Tolerance - 5.0 %
4 : Ignore Comn_DistFactor - false
5 : Include Hop Weights in Priorities - false
6 : Log Annealing Data - true
7 : Include Deubg Info in Log - false
8 : Annealing Log Filename - annealing_data

Enter the line number of the
parameter to update, or zero (0) to continue:

Figure 72. GP-Tool AB Annealing Parameters Sub-Menu

The AB Annealing parameters sub-menu is shown in Figure 72. If the default
parameter values are satisfactory, the user can enter '0' to begin the partitioning process.
Otherwise, the parameter values can be changed by entering the appropriate line number
and entering the new value (if appropriate). The specific parameters are as follows:

"* Nuber of itezations - Defines the maximum number of annealing
iterations to perform before terminating the process, with a maximum of 1000.
Realistically, the default value of 500 provides more than enough iterations to
converge to a solution with the circuits used as test cases in this thesis.

" Max NuMbe of Wothleus Iterations - Defines the maximum number of
consecutive iterations with no net improvement in the communications cost
portion of the objective cost function which can be processed before the annealing
process is terminated. The counter which tracks worthless iterations is reset to
zero each time there is an complete iteration with a net improvement in the subject
cost function. This value should be large enough to ensure that the series of
worthless iterations indicates an actual solution convergence and not jusi a
temporary anomaly in the annealing process.

" Load Imbalance Tolerance - Defines the maximum value of the load delta
factcr Hb that is acceptable. Moves which cause Hb to be larger than the value of
this parameter will not be made, even if they would result in a reduction in the
communications cost sub-function. A value of 0.0% for this parameter will
automatically be defaulted to the value of Hb in the initial partition. A load
imbalance of one behavior can result in the initial partition algorithm if the
number of behaviors is not evenly divisible by the number of LPs. However, if the
number of behaviors is divisible by the number of LPs, the initial partition will
have an Hb of 0.0% and the a 0.0% value for this parameter will prevent any
moves from occurring, rendering the annealing process useless.
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" Ignore-Comr Dist Factor - Boolean value that allows the factor lid to be
ignored when computing the value of the communications sub-function during the
annealing process. When false, it is possible to experience a slight increase in the
number of LPOutputLines as the value of Hd is reduced. However, when true,
the annealing algorithm will have a tendency to prevent such an increase to the
number of LPOutputLines (which has a direct impact on the number of null
messages sent), as well as lead to a larger reduction in the number of inter-LP
arcs. Furthermore, if the number of LPOutputLines was reduced when this
parameter was false, setting it to true may lead to a larger reduction.

" Include Hop Weights in Priorities - When calculating the
communications costs of a partition, each inter-LP arc is multiplied by a hop-
weight corresponding to the number of hops in the corresponding physical
communications link. When set to true, this parameter will take this weighting
into account when prioritizing and queueing behaviors during the annealing
process. It should be noted that the default hop weights are all 1.0 (evenly
weighted), thus rendering this option meaningless. The hop weights can be
modified using option eight on the behavior mapping sub-menu. If uneven hop
weights are used, setting this parameter to true has a tendency to deteriorate the
performance of the annealing algorithm, with no noticeable improvement in the
solution quality.

"* Log Anneg ling Data - Boolean value that controls the printing of the
partition statistics values to an output file for the initial partition and after each
annealing iteration. This allows the progress of the annealing algorithm to be
examined.

" Include Debug Info in Log - Boolean value that will cause information to
be added to the annealing log file for each behavior that is removed from the
annealing queue. This is for development/debugging purposes only. When true,
the number of iterations should be reduced to the 1-5 range, or the annealing log
will become too large to be of practical value. This parameter will have no effect
if the previous parameter is set to false.

" Annealing Log Filename - Defines the name of the annealing log output
file.

C.1.4.2 Toggle MAP and -ARCS Output. Option seven on the GP-Tool
behavior mapping sub-menu allows the user to toggle the creation of the 1px. map and
ipx. arcs files on and off. This allows the user to create only the partition statistics files
for comparison purposes without incurring the overhead of entering filenames and
creating the 1px. map and Ipx. arcs files. It is included primarily as an aid to the
development and testing process. It should be noted that when the ipx. arcs file is not
produced, the value of Larcs is set to 1.0 in the calculation of the predicted simulation
speedup in the partition statistics file because the actual lookahead values are not
available.

C.1.4.3 Modify Cost Function Parameters. Option eight on the GP-Tool
behavior mapping sub-menu allows the user to set several miscellaneous parameters that
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************* MODIFY PARAMETERS MENU *

The current parameter values are:
1 : Consider Topological Variation - false
2 : Ignore Zero Delays in .arcs file - true
3 : Alpha - 100.00
4 : Beta - 1.00
5 : Gama - 0.0750000000
6 : One HopWeight - 1.0
7 : TwoHopWeight - 1.0
8 : Three Hop_Weight - 1.0
9 : Four HopWeight - 1.0
10 : Five HopWeight - 1.0
11 : SixHopWeight - 1.0
12 : Seven HopWeight - 1.0

Enter the line number of the
parameter to update, or zero (0) to exit:

Figure 73. GP-Tool Cost Function Parameters Sub-Menu

are not specific to the AB-Annealing algorithm. The modify parameters sub-menu is
shown in Figure 73. The specific parameters include the following:

"* Consider Topological Variation - Boolean value which controls whether
or not the topological layout of the hypercube is considered when building an SDF
or SBF partition. Reference section 3.4.4 for more information.

" Ignore Zero Delays in . area rile - Boolean value which controls how
zero-delay behaviors are handled during the calculation of the LP delay values for
the lpx. arcs file. If true, a source behavior with a logical delay of zero in LP A
with an external arc to LP B will not cause the lookahead value for the LP output
line from A to B to be set to zero. Rather, the smallest non-zero value calculated
for that output line will be used. This works due to the fact that in VSIM, all
source behaviors must have their signal changes explicitly defined in the
testbench, thus causing them to be placed in the active list at simulation startup.

" Alpha, Beta, and Gamma - Coefficients to the partition cost function that are
used in the calculation of the predicted speedup. These values have no effect upon
the partitioning algorithms.

"* Hop Weights - Weights associated with each inter-LP arc based upon the
number of hops in the corresptnding physical communications link. These hop
weights will not affect the random, SDF, or SBF partitions other than increasing
the value of the communications cost function. However, since the
communications cost function is actively used in the AB border annealing
process, the hop weights will directly affect the resulting AB annealing partition.
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C.2 GP-Tool Developer's Guide

This section provides a brief description of the Ada source files required to compile
and run the current version of the GP-Tool utility. The source code is highly modularized,
with different functions performed by separate Ada packages. The following is a list of
the primary Ada source files in the GP-Tool hierarchy:

abannealingpkgb a printing_pkgb. a sdfpartition_pkgb. a
ab_annealingpkgs.a printing_pkg_s.a sdfpartitionjpkgs.a
annealingtoolspkgb.,a randgen_b .a sort vhdl_p.a
annealingtoolspkg_s.a randgen_s.a statistics_pkgb.a
buildgraph_b. a random partition_b. a statistics pkg_s a
build_graph _s.a randomypartition_s.a toolspkgb .a
graphtool.a sbf_partitionpkg.b.a toolspkgs.a
miscvhdlpkg_s,.a sbfpartition_pkg_s.a vhdltopsortyp.a
print graph_b.a scsearchpkg_b.a
printgraph_s.a sc_searchpkg_s.a

The remaining files required to compile GP-Tool fall into the category of generic Ada
packages, and are as follows:

digraphutilities b.a liat_search_b.a
digraphutilitiess.a list searchs.a
directed_graph b.a list_utilities b.a
directed_graph_s.a list_utilities s.a
gen_doublylinked-list_b.a map_unboundedcache_b.a
gendoubly linked lists.a map_unboundedcache_s.a
genstatic strings_b .a priority queue b.a
genstatic strings_s.a priority queue s.a
generic queue_b. a seq_storagemngrb. a
generic queue_s.a seq_storagermngr_s.a
generictop sort b.a setiterator_b.a
generic topsort_s.a set iterator_s.a
limprivate-mappkg_b,.a stackpkgqb, a
lim private-map_pkg_s .a stackpkg s. a

Figure 74 shows how the various Ada packages interact to form the complete OP-
Tool application. Note that misc vhdl_pkgs s. a contains several package instantiations
in a single file. Note also that the figure does not specify the specific generic package
dependencies, but treats all of the generic packages as a single group in order to simplify
the diagram.

The functionality of the most critical packages are listed below. Each of these
packages also contains extensive source file comments with more detailed information.

"* graph_tool - provides the overall program flow control, displaying the
menus and making the appropriate sub-routine calls based upon the menu option
selected by the user.

"* build gra.ph - reads the input file and builds the behavior inter-dependency
graph structure in memory.

"• randompaz'tition_pkg - performs a random mapping of the behaviors to the
given number of LPs.
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"• ab annaling partitionpkg - takes a partitioned graph as input and
peiforms the AB border annealing algorithm in an effort to improve the quality of
the partition.

"* a&,naingtooLs_pkg - provides several utility functions used by the AB
border annealing algorithm, such as displaying the annealing parameters sub-
menu, initializing the vertex priorities, and printing relevant data and debugging
information to the annealing log.

"* toolspkg - consolidates several utility functions used by all of the
partitioning algorithms into a single file in order to minimize code duplication and
improve code maintainability; functions include initializing data structures and
linking a new vertices to the Parent-Child chains representing a given LP
assignment.

"*statisticeaykg - provides routines needed to evaluate a partitioned graph
and calculate the statistics values associated with the partition (inter-component
arcs, load imbalance, predicted speedup, etc.); includes a routine to build and
initialize the communications weight matrix.

"* printing pkg - provides routines to print the key output files including the
partition statistics file, the ipx. map file, and the lpx. arcs file.

"• acse.eazhcpkg - provides routines to perform a strong component search on
an unpartitioned input file, linking the strong components together similar to the
LP assignment lists.

"* print._raph - provides routine to print the "queue.dat" file used as input to
the build arc utility which can produce the corresponding lpx. arcs file; note
that build-_arc is no longer supported and cannot handle large input graphs.

"• sortVHDL - provides routines to perform a topological sort on an input
grapfh.
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Appendix D. Simulation Performance Data

This appendix contains additional simulation performance data to supplement the data
appearing in Chapter 5. The first section contains tables which summarize the actual
performance data for a selected subset of test cases. The second section contains
additional message traffic analysis graphs for a selected subset of test cases.

Table 3 summarizes the performance of the single LP wallace tree multiplier case.
Tables 4 to 16 summarize the performance of the wallace tree multiplier for all four
partitioning types: random, SDF, SBF, and AB border annealing. Tables are included for
2,4, and 8 LPs for each partition type. Each table contains the simulation time, the total
time (which includes the time to load the cube nodes), real message transmitted, null
messages transmitted, and total messages transmitted. All performance measurements are
with respect to the simulation time. All times are in ns. Each table also summarizes the
corresponding partition statistics values as calculated by GP-Tool. Tables 17 to 28
provide an identical set of data for the associative memory array.

Figures 75 to 78 provide additional real messages vs. null messages transmitted
graphs to supplement the test cases discussed in Chapter 5. Graphs are provided for both
the wallace tree multiplier and the associative memory array. Figures 79 to 84 provide the
corresponding total messages transmitted vs. output arcs graphs, while Figures 85 to 90
provide the total messages transmitted vs. LP output lines graphs.

Table 3. Wallace Tree I LP Simulation Results

ircut- Walk= Trial SimTimae(). Tasl Time (im) RainSet NulMnSew Total Sm
1 67.940 77.044 0 0 0

Partkti. RoA 2 675940 77.02 0 0 0

Nm? Vartis - 1.050 3 67.940 77.022 0 0 0

Nu ,,, ,1.7570 4 67.940 77.036 0 0 0
N=asm 1 5 67.941 77.034 0 0 0

hInr-LP Ant 0 6 67.950 77.042 0 0 0

W I _ , - - 0.0 7 67.949 77.036 0 0 0

Av&LW &MArc - 0.0 8 67949 77.041 0 0 0
SjdevWabL OutAM 0.0 9 67.950 77.037 0 0 0

MaxxdvWgh.OLat_ - 0.0 10 67.949 77.032 0 0 0
St ev _W&hbtxArcs 0.0 11 67.950 7 ,075 0 0 0

Mxrd-vWg tlnAcs - 0.0 12 67.950 77.053 0 0 0
CamLCatF-Faoa - OCAM 13 67.950 77.049 0 0 0

Caom.Dist-Fctav - 0.00% 14 67.950 77.263 0 0 0
LP O"lpW h,,- - I Is 67950 77.208 0 0 0

L*boad-Plaw 0.OO0 16 67.950 77.061 0 0 0

AvjLCo-mWlJ - 1050.0 17 67.949 77.115 0 0 0

Stv. -Comp I.md - 0.0 Is 67.950 73.629 0 0 0
MaXdLvCmnp Liad - 0.0 19 67,950 77,517 0 0 0
n LA -77ft07or - .00% 77 "r 3 0 0 0

,rdlud Spe. aap - 1.00 1 Z ",1 1 77,173 6 6 0
-A_ ddevl 4 354 0 0 0
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Table 4. Wallace Tree 2 LP Random Patition Simulation Results
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-Ih .J-AM 866.0 7 30A0M 38.497 8,502 2.778 11.30

Avs.WsMA-m 413.0 8 3w.607 39.6.5 8.502 2.749 11.251
S WdsvWOL.AKM 5.7 9 3.353 406482 3.502 2.760 11.262

.Wdogsaw t OaLAM 4.0 10 3.523 31.606 8.02 2.13 11.35
SfdsvW* Aia m 5.7 11 o.609 38008 8.502 2.801 11.303
Msadw-WPLjaAm 4.0 12 AM 38.449 8.502 2.790 11.292
CM (Lft, . 4831.J 13 23,702 38.091 .502 2.74t 11.266
C fmL. jm 0.921& 14 23.8" 38=3 8.502 2.812 11.314

LPO•pKJ.t m 2 15 2.861 3.1248 8.502 2.767 11.29
1. LOW0 16 2.350 38.239 .=502 2.771 11.273

AvL•CWJL..Ad 525.0 17 t.941 38.337 8.502 2.776 1 1.271
Std-8C64 ..J.d 0.0 s 1 3.6 38.015 8..02 2.782 11.234
Mmtdev_.p-J L -d 0.0 19 30.130 38.5M 3.502 2.737 11.239
L8dD sJk taM .O0M 20 2 1 3 727 114 I 766 1126 I
h m Spma, -1.54 A, 3 a I I 1,774 1 6

S'-[a 275 613 0 20 20

Table 5. Wallace Tree 4 LP Random Pantion Simulation Results

CkM - wa-m TrI StaThw m) TOmWI -IM(-o) R.kSw Nab SON TOMESMU
1 U" 34.176 14.902 17.831 32.733

P-tao R- d. 2 2367 35.510 14.902 17.807 32.709
Nm•y.Vt•s - 1,050 3 26,585 35.821 14.902 17.777 32.679
Nun Aim - 1.770 4 24=.92 34,147 14.902 17.978 320850
NaL.Pa - 4 5 20.690 34.343 14.902 17,880 32.782
famrL4.Prc - 1,332 6 25.949 35.134 14.902 17.739 32.641
WSgM JL.PAm - 1332.0 7 25,127 34,333 14,902 17,834 32.736
AvLWbLAm - 333.0 8 50.256 34.425 14.902 17,904 32.306
StddrvW .OuArca - 21.1 9 54.970 34.145 14.902 17.813 32.715
MAv WgtOnLAzw - 21.0 10 24.774 34.030 14.902 17.9W0 32.802
SldvWs fbtAra - 14.5 11 2".276 35.437 14.902 17.937 32.839
MudcvWghin..Acs - 16.0 12 25,009 34.=5 14,.902 18.020 32.922
C=MI.•bY;a - 75.Z0a 13 2k833 36.0635 14.902 17,803 32.705
CbmDi8._actm . 6.31% 14 232 35.50 14.902 17,41 32.743

0P_ k - 12 is 20.916 34,095 14.902 17,794 32,096
okahmnd Fac• - 1.00 16 25.645 34.890 14,902 17,932 32.834

AvLCompL-d - 262.5 17 26.026 35.276 14.902 17A646 32.548
SsdvC-p.J - 0.6 18 20.894 34.127 14.902 17.895 32.797

MadzmvCampILoid - 0.5 19 2.665 35.771 14.902 17.42 32.744
LadDeUL•aF-Yta - 0.19% 20 50827 34072 14 17933 325640
,Ptedi•d Speedup -2.13 1Ave I S 7AM81 1490 11• $758

1Stddv 684 682 0 8 85

Table 6. Wallace Tree 8 LP Random Partition Simulation Results

CkcUit - Wallace Tri Sim Tin (mu) ToWa Tkt (ms) Ra Sent Nails SeW Tout SM
1 5,5.859 67.535 19.066 81.967 101.033

PauId t Rinu- 2 55.618 67.278 19.066 81.712 100.778
NuOnVe.tices - 1.050 3 56.053 67.753 19.066 81,763 100.829
Mn4 Arnx - 1.770 4 55.725 67.393 19.066 82.079 101.145
NuJP%- a 5 55.769 67,480 19.066 81.736 100.802
Imr-LP Armc 1.558 6 54,848 66.4"9 19.066 32.010 101,076

Wa•n I.FrLPAr 1558.0 7 56.418 68.097 19.066 31.496 100.562
AvWstArc - 194.8 8 56.055 67.750 19.066 81.535 101.651
Stddav WphOut_O Arc - 11.1 9 55.276 66.950 19.066 32,129 101.193

udav._Wsbt _Arc - 12.3 10 54.710 66.359 19.066 81.345 100.911
Stdv_-Wxlt_...cAz= 10.0 11 55.052 66.714 19.066 81.707 100.773
M&wýWgjhtz LAas - 13.3 12 54.550 66.234 19.066 82.219 101.285
C=nCo$cLi_ n - 36.021. 13 53.632 65.293 19.066 32.543 101.609
CeInDig cw - 6.2 14 54.338 65.950 19.066 82.155 101.221
Lp-o"-Li - 56 15 54.340 65,957 19.066 81.521 1003587
teekabad Fator - 1.0I0 16 S4.788 6.491 19.066 82.530 101.596
AvLCOMpLcod - 131.3 17 55.174 66.734 19.066 81.33 100.949
Stddiv Cmpl.m - 0.5 13 54.459 63.038 19.066 81.846 100.912
MadaCompLion - 02 19 56.148 67.836 19,066 33.55 102311
L.adDeia-, - 0575 2D 67 199 8_18 100912

-mdiad Spea 1 .39 A~ a • 19;a4 I1.99l i Z11457
S1d 736 754 0 403 403
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Table 7. Wall&=e Trim 2 LP SDF Partition Simulation Results

W ba Tha Sm Tie M)TO "M (M Rauk S" Nub 5 Tows"
1 3.32 33259 1.02 On2 2.9

SW2 3,357 37.0S3 1.07 1.902 23
u aea1.250 3 3.537 33.15 1WV 1327 UM~Aa1.770 4 3 8,3 3170 I=02 132 3.9s
un.u-2 S 20.595 332 1.02 1.3"1 2.913

ISOLPAU 5 6 3.97W 31.=1 1.027 1.950 2.977
Wgh..I..LP-..r is1". 7 3.59 33.293 1W 1.W7 2.91
AVgWhLW Ar= - 5.0 a 3.62 34.257 1.02 1.394 232
Skifv.W&LOm&Arw 97.0 9 3.66 AM.3 1.02 1.39 2.M9

.wto~whLJ261AM 6.0 10 20.513 34.143 1.02 1.936 %W96
31ddv.W*tAwk~r 97.6 11 3.335 33.034 1W= 1.923 MW93

Mue.Waldja..Am 69.0 12 23.56 34172 1.W 1.962 2.969
COUgk- u oni- W%37 13 3.417 38.102 1WV 1.916 2.943
CMDWgJac3 924009 14 23.537 33152 1W 1.917 2,944

LP..OWPNt.ULa 2 13 2P540 31k152 1.02 1.913 2.94
Leckaboadjudin 1.00 16 29.600 32.3M6 1jW 1.927 2.954
AVLCauWjLaad -525.0 17 3.94N 33.231 1WV 1.914 2.941
Silav..Cmp-JAM O 0.0 13 9.652 38.29 1WI 1.900 2.927

*wdVC pL~ 0.0 19 39.67" 34.24 1W 1.917 Z944
- o~m20 343 05 1.02 1."7 19742....

1.94 SMOP Ay 3 133 ja L.97 i "
Slimytv 92 39 1 0 1 20 20

TableS8. Wallace T=e 4 LP SDF Partition Simulation Results

Circit Walk=s TrWa Uni~w TcW1b=(= Rash S Nulk SMu TOtalSa
______________ 1 25.313 34.63B 2.703 14.367 17.655

Partmwta SOP 2 23,741 33.012 2.783 14.921 17.709
N=.Vmits .1.050 3 23.71 33.096 2.788 15.123 17311
NwArcs 1.770 4 25.73 33.070 2.7351 15.003 17.791

.NMI.? 4 5 23.796 336163 X.735 15.111 17.899
ft4LP Arm .312 6 M5.531 32.799 2.788 14.115 16.903

Wgb hLbtJL.P m - 312.0 7 24.195 33.405 Z.7$3 14.319 17.017
AvgLWSLA- 78.0 8 UM93 3Z2.3 2.783 14.075 16A653

S~a-lLWA= 66.5 9 26.062 33.9M9 2.7835 1415 16.93
Mudv..Wgbot.Out..Ara 39A0 10 "151 31.860 2.788 14.113 16.906
SWd9IW -Lh.AnS 46.6 11 25.62 32,926 2.788 14.241 17.029
Maxw.&.WabhLa.AWa 49.0 12 26.506 33.73 2.788 13.910 16.019

coo 17JM 13 72J.26 3Z.00 4783 14.111 16.j9
Diatyacftw 114.109. 14 25.479 32.7% 2.733 14.216 17.004
.. ~5LAM 1 15 22.69 31,M3 2.788 14.125 16.913

p Lckam P. .o 0.667 16 21.97 3Z.279 2.7311 14.0= 166026
AvC;u.La 262.5 17 24,536 3X.746 2.73 14.109 16.397

Sdd-v.Cinp-L-d O- 0is1 25.073 34.309 2.733 14.004 166792

-CMuP Lout 0.5 19 23.013 3Z.217 2.733 14.050 16.8338
LodDOWl Futta 0.199. 3D 32.320 a. 1400 ___

Ptedickd Se* 3.01 Ain ~ 33 1 32 .. 79..0171
p g ýS~dv 735 - 793 1 0 1 402 402

Table 9. Wallace TreeS8 LP SDF Partition Simulation Results

Cckuaf .Walluot TrWa Simt To (m) Tota Tims um) Riul, Sea Nulls SwAt TOWa Sewt
1 44.23" 5537 5.241 60.315 65.536

pjjlm SDF 2 43.96 55.140 5.261 60.075 65.316
Nut, Valiota 1.050 3 45.067 56,310 5.241 60.047 65.33
Nu Aircs .1.770 4 46.353 57.940 5.241 60.370 64611
NaunJ.Ps 8 3 " 4,776 55333 5.21 60.344 65.5
bar-I.? Am 536 6 44.770 56316 5>21 60.019 65.260
WW33..ItatLP-AJU 536.0 7 44.765 56.304 5.241 5d363 63172n
AVILWgtl.Am 67.0 8 45.025 5AG60 5,241 583900 64.141
SMdW-W~tkt-.NAirs 49A6 9 46-37 53.04 5,241 59.906 65.147
Mauchv-WXMt.OaL.Am 121.0 10 45.725 57.298 5.241 59.544 64.735
Stdd-uW$t.Mj..Arn 13.5 11 46.341 538495 5.241 53.35 44.095
Mwaxdvv.Wghtjn..Arcs 40.0 12 44.336 5W.41 5.241 59.616 64.8S7
Corn Coat-Paclu 30.39 13 46.316 53,428 5.241 59.135 64.426

Co= M0.609.s~o 14 44.544 X6215 5.241 59.027 64.266
LP.Output.Lims .45 is 45"9 57_535 5.241 59.265 64-406
Loded-a c at 0.50333 16 44.008 5ss57 5,241 59.257 64.493
AvjCouy.Laad .131.3 17 43.400 55.065 5.241 59.553 64.794
SaddwComp-Lad .0.5 13 4.993 56.32 5.241 59.666 64.91Y7

Mut-m - d 0.8 19 47,23 53.32 5.241 5&.797 64.053
0379. Ddm Faci 053614 521 64193

__________1_1_______1__1__ S1 0 1 533 533
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Table 10. Wallace Tile 2 LP SBF Petition Simulation Rensut

*W~bm TowI ShaTimm .) Towim m 1 R h ~k su ?duwbSu T"m Sam
___ __ __ __ __ __ __ 1 30.37 31.30 IAN 1"5 3.043

*SOF 2 30.35 3111749 I.=3 1.9" 3.03
u..vadou - 1.0 3 30.176 38.3 IANS 2.=0 3.0106

-1.770 4 306135 39=33 1"05 1.990 3.078
2ji? 5 3W.73 3IL645 IAN3 1.91 3.076

la-P~i 6 6 3.971 3IL391 1*0 2.016 3.104
WgbK.,P..Mc 16&.0 7 30.22 31L777 1.03 1.964 3.052

AwL-WgbAM Il 810 30.1Z1 3IL670 IAN5 2,011 3.009
MdsaiW~tONAr= WAS7 9 30.409 39.714 1.0K 1.954 3.062

bb .s-WghL~LA& - 69A0 10 30.003 36.617 1.03 I'm9 3.090
*ilsý* kA 97A6 11 30.173 38.5K111 1.0811 1,963 3.051

..srvWghLbu.*zA 69a0 12 3035 3IL774 LOU3 2,W3 3.091
C a..P .LF 9.150 13 30=13 39.110 1.038 1.933 3.071
ComwLIDULYmaw 8.195% 14 3.91 38.449 IAN 1.37 3.075
LIP..O104J1im 2 is 30.0= X8731 LOSU 2.016 3.104

1.000-a~r A 16 30.107 38.37 1.03 2,012 3.100
AYL-CoW.L.65 525A 17 30.141 398.20 1.013 1,960 3.023
S~64V..C-PJAW Oi 0.s1 30.109 38.970 IAN3 1.133 3071

.. CevqOM.jad 0.0 19 29.97 38.506 LOU3 11996 3.056
COOSBV-C 0 3D 11103 1!: 94203

t m
adild SueOp - 1.94 , 1 6 0 .1

_____________________ SIdvl 134 3 1 0 j 24 a4

Table 11. Wallace Twe 4 LFSBF Patiton Simuluation Reaf

irutWallac Trwa SkaTia. im) Tutu Thm C.. Rmt§SONS Nulls Sent Told &

-I- AM70 29.179 2.78 19038U 12.173
SIPhonO 2 19A"1 23.960 2.733 1%.277 13.062

uIM..Vams 1.050 3 19.751 29.064 2.735 10.136 12.971
NaAS1.770 4 19.580 23.9160 2.785 10.070 12.853

NanJ.P. 4 5 19.62 211.1199 2.7253 106168 12.953
MrUAm34" 6 A0498 29.605 2.725 10.368 13.153

W~b~k~JYPA- 346.0 7 19.5a2 28.333 2.785 10.201 1.9366
AvgLW36.-Au * 6.5 6 19.88 AM08 X.785 10.234 13.009
Sdv-W&OLg.tAMm . 5% 9 19.615 29.133 2.7835 14.129 12.914
bMzKvWgk9x.kAr= 75.5 10 20.302 29.457 2.785 10.126 12.911

-d~-WO hA 53.3 11 19.980 29.394 2.73 10.129 12.914
M3dov-Wg64JILAWS - 41.5 12 19.613 2IL72D 2.735 10,142 12.927
COOM..CsJaaw .19.35% 13 19.191 29.117 2.785 10.221 13.006

*om-UFco 672M% 14 19.377 28.676 2.735 10.305 13.030
I-j00gpULUJ 9 15 19.442 23.313 2.73 10.177 12.962
ADLMINDAla FAw . 0.783 16 19.701 29.030 2.7815 1M231 13.016

AVIL-C-.LA~d -262.5 17 195356 23,703 2.785 10.122 12.907
SzWdC-..Lcad O 0is1 19.252 23.815 2.735 10.139 12.94
Msudev-mDPJALO 0.5 19 200= 29.205 2.7115 10.18 12.974
'..MADeftbFlo 0.19% 20 203 294 I3 1 I 11 I 9Phdicmd Svepof 3.12 A I& 19A I88M 7 753N 1 i1su I 1~

__________________ 6vi 347 312 1 0 1 73 1 73

Table 12. Wallace Tree 8 LP SBF Pestition Simulation Results

Ckm~s Wallm Trial Sm Tim. (MO Toail Tim (m) IRosh Sol Nulls Sow TOWa Sew
I 23.39 34.270 4.762 31.099 35.361

PriinSap 2 23,176 34.433 4.762 30.994 35.756
Nuta Vertims .1,050 3 23.40 34.U4 4.762 31.212 35,974
Nam-Aga 1.770 4 23,417 34.826 4.762 30.948 35.710
Nja .J 8 3 24,514 35.917 4.762 31.007 35.769
imfr-LP Atcs 5 50 6 24.146 35.41M 4.762 30.3101 35,563
Wg36.hMrj.P..Azca 550.0 7 23.98 35.318 4.762 30.754 35"16
AvLWght-A- 683 8 24.30 35.639 4.762 30.619 M35.0
StdvWOit..OuArc. 34.5 9 23.60 34.918 4.762 30,796 35.558
Mudrv Wjil..Oui A=o 76.3 10 24.409 35.518 4.762 30.183 3530=
S~dftvWalK.b..Acs 24.3 11 14.39 36.192 4.762 30.952 35,714
MamalvWghtjn..Aws .23.3 12 24.177 35.652 4.762 30.904 33,666

Ca=~s-- 31.M7% 13 23,672 34.972 4,762 30.936 3570D
CownDlinYwwm 110.91% 14 23JM7 35.2S7 4.762 30.992 35,754
I.PR-u9WOLI-ble 29 15 22.956 34.467 4.762 30.937 33,699
LuukaLdrm ad w OA 069 16 22.48 34.074 4,762 30.945 35.707
AVLC-M-Lod .131.3 17 24.136 35.6S1 4.762 30.463 35.225
Stdduv-C-p-L-d .0.5 i3 24.439 35,652 4,762 30.933 35.685
1.EaaBv-Ompj~od .101 19 23.27 34.660 4,762 30.360 3A 122
LoAd Delskla Pa1 05M 20 219 3_475 47_62 6041 35366
ftedicoed spedp 3.20 Av 1 7321 3123 1 4762 1 36,84 35616

&Adeie 596 1 569 1 0 1 204 W4
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Table 13. Waljace Thee 2 L.P AB2 Partition Simulatio Remits

*Wwbo. 1twk Sh 7% =)To i Rubsk om 34.1kSo TowISon

*I A2U AM 27,42 3569 1.XM22 .
___________________ 2 27.472 3S.M5 1.065 2.24 36M1

IMO05 3 27.453 n5927 1.065 2.21 S.M6
u~m-1.770 4 27.37 33,852 1,045 2.210 &2"5

-2 5 27.451 35.93 105 W2.217 3.25
ln.PAa*97 4 27.45 35.526 1,06 2,216 3.261

sM.S1L.mhwJp-*O 97.0 7 27.45 AM93 1.04 2.216 3.26
Avg-&WLA- 44,5 I 2.46 35.927 1.04 2.27 3JU6

2WLNA 4.7 9 27A63 36.957 1.04 2.212 3.257

.W~O.OLAw . 17-5 10 AM45 36,69 1.04 2.216 3.261

*WbkA 24.7 11 W7.434 3"094 1.04 2.11 3.262
.W&WhLAmc 17.5 12 27.460 37.337 1,045 2,216 3.261
Ca&Yume - 5SA5 13 27,456 35.935 1.095 2AM 3.265
D6&N56 * 36MU% 14 27.44 35.93 1.045 2.21 3.361

*2 15 27.451 35.939 1,045 2.217 3.262
inam ~ .1A00 16 27.457 35.94 1.045 2.217 3.262

Avg-C-WJLOa~ 525.0 17 27AM5 33.93G 1.045 z2.2 3.X66
.CaJm6L I 1A is 27,45 35"b2 1.45 2.215 3.260

1.0 19 27,44 AM92 1,045 2,217 3.M26
-0.19Y. 20 2741 _ .61 1045 III7

- ~ ~ ~ ~ ~ ~ A 1I I5~ ~ .. a. .&L. .L.
Svd" 45 1 414 1 0 1 2 1 2

Table 14. Wallace Thee 4 LP AB2 Partition Simulation Remstit

-Welf.c ThaI Sim Time (m) TonI This (m) Rubk Sol _Nab Son Towsonm
1 19,337 23,403 1,760 8.710 10.470

*A02-.2 2 19.M3 29.800 1,760 5.730 10,450

u..VWOOs 1.050 3 15,69 27,939 1.760 5.514 10.S74

m mn-1.770 4 19.451 23.601 1,760 5*10 10,560
~La4 S 20M7 29.037 1.760 SAS6 10.60m

kaua'LpAra -192 6 19,40 28.912 1,740 S.795 10M55

Osk-m-ipJAam -191A 7 15.96 23.065 1.760 5.731 10.41

AvgWLWS.AU - 44A0 8 15,750 22.00 1,740 5,733 106493
S~d~vW-W .Ah rm . 39A6 9 19A69 23,931 1.760 8.799 10.55

M dvW~.hLOtA&=S U.5. 10 30.03 29.015 1,760 5.739 10.489

S1A.vW#K-JmA- 32.7 11 30.124 29,310 1,760 m.5 10.343

Wglmt-WO .hLAmx 27.0 12 20,071 29.151 1,760 5.62 10.385
COOLDYa - 0" 13 19.736 23,795 1,760 5.75 10.510

.04in ac56 . 120233 14 19,517 23.914 1,760 5.785 10.54

.lýONVIAAMa 9 15 1i,9" 21L091 1,760 8.792 10.552
.og~imbSO&R r - 0.54 16 19,415 25.859 1.760 V.31 10.491

AvgLCuqWJLd 262, 17 0,076 29,134 1,760 5.731 10.491

S~d-CNWJA d 4A 15 15,763 27.876 1,760 10560 10.=2
Mud Loa6 -4e 3.5 19 19.044 28.237 1,760 5.72 10.453

oa-omodr 1.33* 2D 2019 227 1ý760 5*1 0.45
Pnadicd *!f 3.16 A 19 47 7176 74 VO 1

ISM&A 495 - 463 L- 0 _I 65 1 65

Table 15. Wallace Tice 8 LP AB2 Partition Simulation Resuilts

Fc~mft Wail.. TrWa Si. T1ne (M) Toni 1k (a. Roask So NullsSon Told SCM
1 17,3 27,974 2.762 18,649 21.411

AR- A 2 2 17091 28.784 2.762 15.905 21.57

:- Vadeo 1,050 3 16,555 27.159 2.762 15.951 21.743

Aimi i 1.770 4 16,516 27.351 2.762 15.933 21.697

NJ:.ps . S 17,055 AM.3 2.762 115.901 21.663

IN"-LP Arc 295 6 17,251 251I76 2.762 15.963 21.745
Wga. -kJP.Afa 295.0 7 18,194 29,0358 2.762 15.32 21.644

Avg-W&JM-A * 36.9 a 15,514 29.3"7 2.762 15.944 21.706
SedvWfat-OutLAscs 31A0 9 17,060 27.974 2.762 15.916 21.675
Mud4vW&*5.OLAU - 71.1 10 17,019 27.931 2.762 18.914 21.676

SMV-W&K-]MMf 23A it 19.632 30.446 2.762 18.505 21.570
MmzdvvWghMjnj4Jms -39.1 12 17,522 25L780 Z.762 19.051 21.513

Cm orn uja~m 16.67% 13 16,30 26,992 2.762 15.555 21,427

ComDiMJI 192=5* 14 16.50 27,320 2.762 18.762 21,24

.OuP&04ALk. 26 Is 19.024 29.928 2.762 15.856 21.648
L.ookamhud-Fa 0.547 16 16,40 27,237 2,762 M5972 21.734

AV 5 .-COMjAni 131.3 17 17,55 2AM2 2.762 18.778 21,540

Suidvv-C~mV -d .3.5 1s 17,95 25.02 2.762 1MIS5 21.617

Mue-~pLand is1 19 14.710 27.491 2.762 10.16 21-57

Lod ea an -1.33% Z21 _1 2.5762 19M5 21521

I_________________ SO&VI 875 1 922 - 0 1 1 95
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T"bl 16. Asaccialive Menwry 1 L.P Sinmulmuian Rauats

- Auus3m TOW Si Tb iI TOW ) AlSo Nub 3m Taw Sao

- 1 4,31"OA4 4,55.1 00
____________________ 2 4,3319 44530,0 000

ua~s - ,233 4X36.13 4,S30 14 a 0 0
~Au-932 4 4.531)42 4,701,3 0 J

-1~ " 416.719 4,55.60 0
Igftt-LAMa 0 6 4.35,02 4,53.03 0 a

-s~ipm 0. 7 4,35t017 4.530=02 0 0
AvgLWgI&Ag 0.0 6 4,356,17 4.530.23

4 WbkO *I 0.0 9 4,35,96 4.530.135 0000
.aowWabONLAgm 0.0 10 4,356.22 450.1I13 0 0 0

Nddrv-O~k- - 0.0
MauwvWI&gMjAaWa 0.0

COSmkamcft - 0.0
CooDWu1Y - COO

LPOPUl .0
Luachd-Fhow - 000
AvgLComp-Lmd 4,243.0
Smd@V.C-Ji- 0.0

Maos."pimd * 0.

ndo Soomftp -0.00 A- 1j 4MW 1 4-*L2 _____ _____

_________________ Slde 51,57n A 51.6 1 0 1 00
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Table 17. Auocaanve Mcmoy 2 LP Randomn Partition Simulation Results

cký- Amc06 Thai Sin T~w(M) TalTOaf RaakSam Nh Son T.I Sam
____________1_ 1.742.2U4 1.940.3W0 337*25 13.396 351.221

pautem - md 2 1.326,3 13.9790 33732 13.403 351.2X
NOWLVaties 4.140 3 M32.446 13.8716 337,225 13.357 351.132
N=XAIta 9,312 4 1.36,36 1"99.004 33".J25 13.490 351.315
NNWLL 2 5 1.833.512 1.991.699 337.825 13.432 351=25
Iae-1.P Aa 4AV5 6 1.215.739 1"97.916 337"2 1I.473 351.298
WgK-wb jYP.Ae 4,65.0 7 1.776"7 1,935.006 337.32 13,5W 351.349
MgLWgtiAma -2.33.5 a 1.774.200 1,932.324 337,32 13.390 351.215
Slddv.W&93 LAIU 725 9 1,10.705 2.063,33 337,32 13.530 351.35
Mm.IVWgMLONAam 5.5 10 1.U32753 2,040,916 337.825 13.452 351.Z"7
S~ddv-W#ILIA- 7.2

MuwWaf.InAMc - 5.
4OMb&Facar - 50.01%

COMULWJC - 0.24
LP.0Upq3.Lkm 2
Ig*&h"-Fac~ .1.00
Avg-Cmup-Ayj.m 2,121.5
S~ddev-COMPJLoo 0.7
MaxdbV-COp..Lcud -0.

ftedi~d 5m6631 1-95 A.m 1 I J 13.3 IJ . AUJIU 3H17
_______________S~isy 4:4112 1 42I130 1 0 1 56 1 56

Table I S. Associative Memory 4 LP Random Paritihon Simulauion Results

Ckaalg AIoc hMn Tha Skn Tgm) TaaI ThuOma Rasa SaM Hulb Son TOWi Sa
1 1.339.947 1,496,103 605,106 93.793 701,A9

punitim RAW=n 2 1,31,954 1.453.18B 605.106 93.342 701.948
Niun-atiins 4,243 3 1.352,= 1"5.6436 608,106 93.677 701.783
HumAm 9,312 4 1,233714 1,439,311 60,04 94.001 7MI.05
Hem-.Pf 4 5 1,395,191 1.51].495 606,106 92,901 701.005
IMne-LP Arcs 6.961 6 1366012 1.523,017 6M.,106 93.300 701.40
W3hLMhft J.P-Am - 6,961.0 7 1,331,23 3,437,421 606,104 93.7S8 701*62
AVL-WghLAms 1,740.3 3 1"07664 1,463,375 606,104 93.751 701,35
S&NwWsULOuLArce 317,9 9 1.346,94 1,504971 606,104 93.457 701,561
I~dudv-W1,1OeLAm - 472.3 10 1.367.435 1,523.614 606,106 93,312 701,413
StfV.W3IIkL~Aga 91.0
MazhfV-Wgh1.jnr.Azca 503
COOM.coa1.acwe 74.75%
Coin.DW-aa.Pczin 27.17%.
LP.064IL.1~iS 12
Loekabad-W LOWI1.0
AVL-CaqtJjob 1,060.3
Stddev..COMpJ~fmd 0.5
Madev-Cmnpjoad -0.3

Lcad..DefIJ~a Fae .2 ____________ _____ ______ _____

Ptudided Sveeaw 3.11 ,Awn. 1 45 1.496767 1 I 9.579 1L 701.644
___________________ W,068v I 3A 9 1 314 1 314

Table 19. Associative Memory 8 LP Random Paritiion Simulation Results

Orcuit AmocMNIM Trial Sum TiwK ) Totil"Tkneum Raja Sent _Nu~s Sewl Teal Sew
-- 1 1,39.473 1.553.999 753,73 444,058 1.197,776

Panitiia Randoma 2 1.437.316 1.591.832 753,712 444A51 1,197,963
Hum Vertims .4.243 3 1.453,001 1.607.432 753,712 443.95 1,197.307
HuM -Ara 9.312 4 1,460,323 1.615.389 753,72D 443,656 1,197,576
Hum-1p 8 ~ 5 1.507.919 1,662,466 753.716 443.39 1.197.614
lobu-LP Arcs 8,3129 6 1.428.524 1385W31 753,720 443,991 1.197.711
WgbLIn~rJP Arcs 8 ,129.0 7 1.46U.22 1.625349 753,713 44353 1.197.405
AVL-WSM1Arc 1 ,016.1 a 1.447,797 1,6M2330 753,716 443,731 1.197.497
Slddev-WghttOuLt=i 210.3 9 1.455.769 1.610.297 753.713 443,322 1.197.540
Maxdev W&b OutArcs 458.9 10 1.415.692 1070.23M 753.714 "43.750 1.197.464
Std~v-Wglmtjn..Arc 35.6
ML1drv.WshtI-...Azcs 55.9
COMComma CU 6ot'cu 7.30%
CC=maDi&tFSClw 45.16%
LP.pý-utLimm 3 6
Looka3bad ac~r -1.000

AV&Comp-Load .530A

Stddev.Cmnp-Load -0.5

Moadmev Comp Load OA
Load DO-elaacWo 0.12%
Pftdi~cwd .pe 2.88 A- 1.447.514 1A O 12 7533716 40A L197.613

51MevI 28ý72 1 85833 1 3 1 171 3 72
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Table 20. Associative Memory 2 LP SDF Partition Simnulation Results

Cmk AN -M = Td i Trial) TO rn~w hb sea Nab Sao TOW SOM
1 1.7"A,22 1.910.04 35.476 7,132 33.338

49=SOPF 2 1:709.357 1j.37311 25,476 7.743 33.M3
N 2arm4.U43 3 1469t.775 1.353.17 25.476 7.796 33.274

-w-t 9,312 4 1 .714.009 1.37.56 25.476 7.749 33.205
iNJm_) - 2 5 1.747,851 1,911.490 25.476 7.878 33.354

IMr-LP Am 1,2601 6 1,739.992 1,90.538 25.476 7.380 33.356
g.ýINJj.A*" 1,601. 7 1.704.52 1.5.39 25.476 7.875 33.351

Avg..Wgt.Asa 900. I 1.729A374 1.39.441 25.476 7.87$ 33.354
Sk~fav-W~OLa1Aie 878.9 9 1.674,304 1.3735 25.416 7.378 33,35

MuivW&LzWtAr 621.5 10 1.W49249 1.156,17 25.476 7.139 33,335

Muawv-W3kLIjaAM - 621.5
C~wm1.ya-p r 17.19%
Caeun.DW-acbmP T7.64

LP-OWqALLiau 2
.cO*nb,2d P 0.667

AV.CeaW-Loasd 2.2121.5
wdea-v.COMzPLowS 0.7
MaxdgwCom~pimOS 0.5
LoAd-Det-ka -Faer - .0
PRodkud -2up .97 AIR 1 17141 1 S 4177 25.476 7A

IShiev 2,4133 1 24,199 1 0 1 43 4

Table 21. Associative Memory 4 LP SDF Partition Simulation Results

Ckclt -Awoc-~M= TrWa Sie Tkru(u) To Rubh SIM Nui Smn TOWi Sm
_____________________ 1 1.013.731 1,175.3'24 43.736 63.671 107.407

pautbma SDP 2 1.244.913 1.401.403 43.736 6Z,746 106.50
NonVathcu 4.U43 3 969,530 1.126,12B 43.736 53,552 102.214
NumAxw - 9.312 4 9M0663 1.117.149 43.736 53.544 IM2903,
Nmu.Lh 4 5 1.062.335 1.239.733 43.736 60493 109.219
IO~gfwLP Ares 3769 6 1.111.279 1.26714 43,736 60.493 109,231
WjbtorJ.P-Afu 2.749A 7 1.074,745 1.231.118 43.736 60106M 104.344
AvL-WOIs.As 692. 3 1.073,23 1.234.54 43,736 60.379 104.115
S~fv.W~at.Ou1.Azrs 1.175.0 9 1.093,266 1.254,801 43.736 60.544 104.380
Mudffv.WWh-ORLAlcs 1.759.8 10 1.068,414 1.2X"56 43,736 60.713 104.449
Shidev-W&u..Aia - 331.1
kudzvW~bhLj.AM - 242B
Cin.omuk t..Pacw 29.74%
C-mymnDiatyact- 254.21%
LP-mvWuLftw I 11
'.COW084adFACWo 0.57
AvgLC=uPjLood 1,0W03
Stddsv-Cap-JOad 0.5

MudwComp-Load -0.3

Ptmdld Seod k 3.25 Aa 138709 1 UJ 43.736 GUN7 14.1
IStdfvl 7f%1611 76,153 1 0 1 51,03 1503

Table 22. Associative Memory 8 LP SDF Partiton Simulation Results

Ciract AMnc-JMm Tria Slm Toarkws) TOWlTk~ms) Reals SeS Nalla Sea TOWa Sam
_________1__ 1.252,477 1.4U7,312 fl,148 260.049 337.197

Psrdtjtm SDP 2 1.335,671 1.490.746 77.148 257.653 334.306
Num-Vestles -4.243 3 1.239.755 1.394570 77.148 257.830 333.028
Nwn Ale 9,312 4 1.246,327 1.401.288 77,141 257,904 335.052
NwnL Us 9 5 1.22.22 1.437.108 77,141 257.251 334.399
hmr-LPArcs .3,145 6 1.275.196 1.430.781 77,148 256.36 333,714
W&Wal.heLF-Ara 3,143.0 7 1.140.868 1.295.779 77,148 257X23 334,361
AvL-Wgft Arc& 393.1 a 1.174,754 12,33534 77.148 254.785 333.933
Stddev-Wgjrt-OalnS 595A 9 1.216.161 1.371.007 77.148 257.451 334.5"9
Musdev-WhOut-Arcs . ,39. 10 1,237.724 1,39n678 77.148 257,394 334.542
Stddcv-WgbtIn-A-c 108.9
Mmxbv..Wg&rIn-Ares 8 6.9
COau-Cn.Cataclw .33.77%

CoamDist..Fac-t 33329M
LP.Ou*VUt.La 44
'Lcokskad aCtre - 0.506
Avg..CoqpLoffd .530.4

StddevCeap.L d -0.5

Mazdw-Conp..Lead -0.6

LoadDaftFacto -20125._____ 
_____ ____ ___Oladictad Soreecb - 3.61- Aa 1,240J1 1"00 77.148 257.61S 33'k73

I Std__________Z___7__I 5ZOS, 1 2.3 0 903 906V
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Table 23. Associative Memory 2 LP SBF Partition Simulation Results

Ckcsk ksmocne s Trid SinTMUm)l_____ Mll TGW IIw RS~f N16S TW10
_____________I_ 1 U39.812 2.701.319 214131 7.=3 X71.104

PAM SBP 2 2.611.170 2.7n=92 264.131 7.070 271.20
m~et -- 7- 4.23 2.5844 2 "8069 1.131 7.057 271.168

- Acs 9.312 4 2.55.65 2,721.2N9 3U.131 7.a6 271,187
N Js-2 5 2,355657 2.745.318 264.131 7,045 271.176

lINW-LPAMc 3,707 6 2.62.3.437 Z.#11.31 214.131 7T 0 271.185
Wsk..hJ.P-ArCS - 3.707.0 7 2,633,263 2.782.405 214.131 7.014 V1.1W

Avg&W~hAim 1"1..5 S 2Z612.455 3812.412 W1.131 7.0S6 271,197
S~d4v..W&%.0.1.ArCs -672.5 9 2.M8.795 V.42.364 214.131 7,061 271.21
Madev-WSM-Oet.AKSc 475.5 10 2.572A64 2.733.263 264.131 7,069 271.200
Sai64v.W*Lh-.Arcs 672.5
Staabv.Wgjaje.Arc 475.5
C==cmtJa% - 39111

Co=DbLmjac 25.65%
Lp-Ou~sk-L* 2

Loekabd-ad PO -0.6

MgLCopJ~AM t2.12.5
Sudidev.C~pJ.ft 0.7
Mmav..OmupjLod - 0.
LOWdDeILka Poe 0.02%
Poedkird -podP 1.96 1AmL uosA64 27643 2 31 1 7,857 271,8$

S3dVI 36439 1 39,690 0 1 14 14

Table 24. Associative Memory 4 LP SBF Partition Simulation Results

Circuit- AssocI- - Trial SireTknewm) ToWiIW=) Rubl Sea Nalh Sowt TeOl Sew
________________ I 1.676,39 1.83M69 446A%5 86113 532.769

POW=lm SBP 2 1.1MU29 1.959.591 446.656 85.997 532.653
NumYertios 4.243 3 1.761.017 1.915,298 446.65 85.791 532,454
NUM,.A=c 9,312 4 1,9K~192 2A04.454 446.656 36,480 533.136
Nmmi.JPs 4 5 1-923.823 2.073.081 446.65 86484 533.140
'zMr-LP Atcs -5,967 6 1.763.242 1.917.510 446.656 86,37 533.026
WIb~I2rYJ.P-AbU 5,970D 7 1.761.027 1.915.316 446056 $5.951 MA2W0
AvgLWgbtArcs 1.4912 S 1.900.213 2.054.511 446.656 $6.418 533.074
Stdfv..W~bLOuz.ArCf 927.1 9 1,923.801 2.073.057 44665 86,496 533.152
Meadasv*gh Out Arc 1.1312.3 10 1.763.237 1,917.487 446.65 86397 533.053
Slddev..WxhLk-n2Ac 661.9

Cm--net..acw 644M
C4Cw3D*Ls'twa~ 87Y7%
L-P..OlvaLime 12
Lotiksluad Fader 0.60
AvLCG~jL~od .1.060A

Stddav.Canp..Lasd 0.5
Mssdev.Coamp-Lead .0.3

Load8 Delta Fadeor .0.021 __________ ____

Predicked Sveedaf 3.10 A-2 1 1.617.516 1.2!A~.. IY IG I 46A5 I a!L. 53
___________________ Sidda I szu 0 1 47 247 d

Table 25. Associative Memory 8 LP SBF Partition Simulation Results

Circuit -Afec Mere Trial SireTinetnal Totsl Tlmp(mx), Reals Seal Nulls Sail Total Sent
________________ 1 2.464.665 2.619.50 501.074 294.433 795.50

Panitlio . SBF 2 2.095.664 2.250.030 501.07 295.665 796.737
Numit. kles -4.2A3 3 2.398,370 2.552.531 501.070 295.631 796.701
Nure Ars .9,312 4 2.W8.139 2.538.588 501,070 296.313 797.393
Nure.32a 8 5 2,428.855 2.583.033 501.070 295,721 796.791
finlr-LP Arcs .7.2Z7 6 2,39Z,312 2.546.99 501.072 295.645 796.717
W&JOWrJR.Arcs -7.257.0 7 2.233.466 2-38.701 501,070 296a257 797.327
AvgW&llArcs 907.1 8 2.284.345 2W.5699 501.070 296.347 797.417
S~ddrvW~ht.OutArcs V88.9 9 2.384.796 2.551.415 501.070 295.783 796.A53
Mezdevflt tOul Arcs . 2106.9 10 2.236,645 2,430,125 501.072 296.224 797.296
5188ev Wgbi In-Arcs .400.3

Msxdav..Wght-jn.Arca 475-9
Coai-.Cost..Facta 77,93%
Co.mDiaL.Factm 232.481
LP-OupwLLine 39
Lookslusd..Pactor 0-0542
AvLCoalp-LoAd .530A4

S18dev.Comnpjed .0.5

,&&VCbmp Loa 0.6
Load Della Factor .0.121 %___

PredildW Sp-da 2-71 1Av I -,3X 2.8.69 51.9n71 295.18 1 796X83
iSt&ýv 108 395 1 -O S 1 538 537
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Table 26. Associative Memory 2 LP ABI Partition Simulation Results

m Asc bo Taria Sim' T-talTtae m Sol Nal., S TWal SM
1 1.723.325 1.85.124 25.058 7.993 33.051

Pautl - ABI 7 2 1.736.776 1.179975 25.056 7.991 33,049
NiUMVmartla 4.243 3 1.701,738 1.1164.537 25.058 7,925 32983
N=uArca 9r312 4 1,706-377 13 .10. 25.058 8.076 33.134
NS J.L - 2 5 1,713.874 1 .^r6696 25,058 8.011 33,139
Imr-LP Arc - 1.274 6 1.764,724 1377.553 25.058 8.077 33.1335

Wsgta. .LP.Arac - 1,274.0 7 1,709,T11 1.872,402 25,058 1,064 33,112
AVLWMl..Arc - 637.0 a 1.709.056 1,r71 .5I3 25,058 &04 33.102
SOdWvWafOWtArca 362.0 9 1.734,024 1.3654966 25,058 5,067 33,125
Mad _WhtWgbhtOetAm 256.0 10 1,671,753 1.134.610 25.059 5.132 33.210
S WddwsVWL Arn 362.0
MaudevWg&hJnAA 2560
Cain...CmJ .acto 13.%
Como.Diatyc t - 40.19%
L-pO-QUIL-.iL -2

tkambiad Fbaa - 0.667
AvLCm*-La.d - 2.121.5.
Stddiav_-_CmnpJLd 142
Madev-Campil..oad 10.5
Lind DelLaF on - 0A9%
Predicid- 1.96 Aw 1,717,26 1 I 25.0"8 ;.046 33l4

Slnity 23,4U8 23.488 0 59 59

Table 27. Associative Memory 4 LP ABI Partition Simulation Results

Circuit Anoc-Mum Trial Sim Tiwgnmn) TotalT mS Reals SM Nulls Sam Total Sent
1 1,103.822 1.260.109 52043 47.559 99.602

Pai•ttion ABI7 2 1.006.145 1.162.350 52,043 49.737 101.780
NutaValtes - 4.243 3 969.624 1.126.411 52,043 46.895 96.938
Num Amc 9.312 4 991.067 1,147.950 52.043 47.094 99.137
N _mJ.P - 4 3 699.179 1.055.956 52,043 477113 99.826
lMr-LP Ara 1.920 6 896,519 1.053.:60 52.043 47.090 99.133
W&Ut6or.LPAic"• 1.920.0 7 1.06695 1.242,699 52,043 47,811 99,924
AVLWgbIAIW - 480.0 8 1.016.290 1.173,655 52,043 46.T79 98,822
SiddevWaht OutArcs . 670.9 9 943.176 1.100.039 52.043 %7.700 99.743
MamWght..Oat.Arcu - 1.005.0 10 1.041.043 1.197.878 52.043 47.048 99.091
SWddaWlktLlh Azr 76.9
MAadVWjhtlnArc - 91.0
Co -Coeftacto - 20.62%
ConnDxt-Factor - 20938%
LP_.OulpulxlJa• - 9

'.ookgmad Fatm - 0.692
AVLCCIpLoad 1.060.8
Stddav-Cwmp.LoAd 10.5
MazdavComp-Leed 5 59.3
L Ld DelhaFactor - OA9%_
Predicted Speedup 3.60 AVE 9854• lrl$2.0% U043 1 47-97 ".6"

S1 v1 67196 67,031 1 0 1 816 816

Table 28. Associative Memory 8 LP ABI Partition Simulation Results

Circuit Auoc Mem Trial Sun Timbres) Total Timetmea Reals Set Nulls Sewt Total Sent
1 1.186,793 1.342.30 82.548 232.155 314.703

Parttiion ABIh7 2 1.169.894 1.326.063 32.548 232,437 314.985
NumVerices - 4.243 3 1,111,23 1.268.388 825 232.0531 314.599
Nut Arcs - 9,312 4 1.185.54" 1,342.227 12.548 232,693 315.241
NumLl - 8 5 1.216.265 1.373.98 r2.548 232.332 314.880
',,er-LP Arcs 2,594 6 1.136.925 1,293.550 82.548 232,734 315.282
WehILIterLP-Arcs 2.594.0 7 1.120.123 1.276.639 82.548 232.716 315.264
AvLWghtArcs - 3243 8 IIA596 1.281.187 82 232,627 3153175
StddevWghtOut_Arcs - 364.1 9 1.194.460 1.341.099 82.548 232.007 314.555
Maxd'v-Wght_Ot_A.rcs . 585.6 10 1.149.380 1"30..813 2 232.309 314.857
Stddrv-WShthlnArc . 38.5
MaxdvWilt In_Arcs - 70.8
Co _Coa Facur . 27.66%
Con lamDitFacte F 180.65%
LPOulputjLon 40
I.ookalead Factor 0.602
AvLCObmpL.oad - 530A
Sddev_-Comp-Loed 7.
MudevCompLAmd - 2.6
Load Delt Factor - 0.9%
Predictd Stee,4p - 5.400 1,31S.325 Es1s4 22•.406 314,954

_Stddey 33,199 33,674 0 264 2
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